| Step | Hyp | Ref
| Expression |
| 1 | | disjf1o.xph |
. . . 4
⊢
Ⅎ𝑥𝜑 |
| 2 | | eqid 2622 |
. . . 4
⊢ (𝑥 ∈ 𝐶 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) |
| 3 | | simpl 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜑) |
| 4 | | disjf1o.d |
. . . . . . . 8
⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} |
| 5 | | ssrab2 3687 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ⊆ 𝐴 |
| 6 | 4, 5 | eqsstri 3635 |
. . . . . . 7
⊢ 𝐶 ⊆ 𝐴 |
| 7 | | id 22 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐶) |
| 8 | 6, 7 | sseldi 3601 |
. . . . . 6
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) |
| 9 | 8 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐴) |
| 10 | | disjf1o.b |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 11 | 3, 9, 10 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) |
| 12 | 7, 4 | syl6eleq 2711 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) |
| 13 | | rabid 3116 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅)) |
| 14 | 13 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅))) |
| 15 | 12, 14 | mpbid 222 |
. . . . . 6
⊢ (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅)) |
| 16 | 15 | simprd 479 |
. . . . 5
⊢ (𝑥 ∈ 𝐶 → 𝐵 ≠ ∅) |
| 17 | 16 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ≠ ∅) |
| 18 | 6 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 19 | | disjf1o.dj |
. . . . 5
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
| 20 | | disjss1 4626 |
. . . . 5
⊢ (𝐶 ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐶 𝐵)) |
| 21 | 18, 19, 20 | sylc 65 |
. . . 4
⊢ (𝜑 → Disj 𝑥 ∈ 𝐶 𝐵) |
| 22 | 1, 2, 11, 17, 21 | disjf1 39369 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1→𝑉) |
| 23 | | f1f1orn 6148 |
. . 3
⊢ ((𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1→𝑉 → (𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1-onto→ran
(𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 24 | 22, 23 | syl 17 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1-onto→ran
(𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 25 | | disjf1o.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 26 | 25 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 27 | 26 | reseq1d 5395 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶)) |
| 28 | 18 | resmptd 5452 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 29 | 27, 28 | eqtrd 2656 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 30 | | eqidd 2623 |
. . 3
⊢ (𝜑 → 𝐶 = 𝐶) |
| 31 | | simpl 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝜑) |
| 32 | | id 22 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐷) |
| 33 | | disjf1o.e |
. . . . . . . . . 10
⊢ 𝐷 = (ran 𝐹 ∖ {∅}) |
| 34 | 32, 33 | syl6eleq 2711 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ (ran 𝐹 ∖ {∅})) |
| 35 | | eldifsni 4320 |
. . . . . . . . 9
⊢ (𝑦 ∈ (ran 𝐹 ∖ {∅}) → 𝑦 ≠ ∅) |
| 36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐷 → 𝑦 ≠ ∅) |
| 37 | 36 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ≠ ∅) |
| 38 | | eldifi 3732 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (ran 𝐹 ∖ {∅}) → 𝑦 ∈ ran 𝐹) |
| 39 | 34, 38 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ ran 𝐹) |
| 40 | 25 | elrnmpt 5372 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐷 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
| 42 | 39, 41 | mpbid 222 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐷 → ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 43 | 42 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 44 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ≠ ∅ |
| 45 | 1, 44 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 ≠ ∅) |
| 46 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑦 |
| 47 | | nfmpt1 4747 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ 𝐶 ↦ 𝐵) |
| 48 | 47 | nfrn 5368 |
. . . . . . . . . 10
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐶 ↦ 𝐵) |
| 49 | 46, 48 | nfel 2777 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵) |
| 50 | | simp3 1063 |
. . . . . . . . . . . 12
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
| 51 | | simp2 1062 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐴) |
| 52 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) |
| 53 | 52 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝐵 → 𝐵 = 𝑦) |
| 54 | 53 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝐵 = 𝑦) |
| 55 | | simpl 473 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅) |
| 56 | 54, 55 | eqnetrd 2861 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅) |
| 57 | 56 | 3adant2 1080 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅) |
| 58 | 51, 57 | jca 554 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅)) |
| 59 | 58, 13 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) |
| 60 | 4 | eqcomi 2631 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} = 𝐶 |
| 61 | 60 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} = 𝐶) |
| 62 | 59, 61 | eleqtrd 2703 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐶) |
| 63 | | eqvisset 3211 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) |
| 64 | 63 | 3ad2ant3 1084 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝐵 ∈ V) |
| 65 | 2 | elrnmpt1 5374 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝐵 ∈ V) → 𝐵 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 66 | 62, 64, 65 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝐵 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 67 | 50, 66 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 68 | 67 | 3adant1l 1318 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ≠ ∅) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 69 | 68 | 3exp 1264 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ≠ ∅) → (𝑥 ∈ 𝐴 → (𝑦 = 𝐵 → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)))) |
| 70 | 45, 49, 69 | rexlimd 3026 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ≠ ∅) → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵))) |
| 71 | 70 | imp 445 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ≠ ∅) ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 72 | 31, 37, 43, 71 | syl21anc 1325 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 73 | 72 | ralrimiva 2966 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ 𝐷 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 74 | | dfss3 3592 |
. . . . 5
⊢ (𝐷 ⊆ ran (𝑥 ∈ 𝐶 ↦ 𝐵) ↔ ∀𝑦 ∈ 𝐷 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 75 | 73, 74 | sylibr 224 |
. . . 4
⊢ (𝜑 → 𝐷 ⊆ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 76 | | simpl 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) → 𝜑) |
| 77 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 78 | 2 | elrnmpt 5372 |
. . . . . . . . . 10
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵)) |
| 79 | 77, 78 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵) |
| 80 | 79 | biimpi 206 |
. . . . . . . 8
⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵) → ∃𝑥 ∈ 𝐶 𝑦 = 𝐵) |
| 81 | 80 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) → ∃𝑥 ∈ 𝐶 𝑦 = 𝐵) |
| 82 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑦 ∈ 𝐷 |
| 83 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
| 84 | 8 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐴) |
| 85 | 83, 63 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝐵 ∈ V) |
| 86 | 25 | elrnmpt1 5374 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → 𝐵 ∈ ran 𝐹) |
| 87 | 84, 85, 86 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝐵 ∈ ran 𝐹) |
| 88 | 83, 87 | eqeltrd 2701 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ∈ ran 𝐹) |
| 89 | 88 | 3adant1 1079 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ∈ ran 𝐹) |
| 90 | 16 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅) |
| 91 | 83, 90 | eqnetrd 2861 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅) |
| 92 | | nelsn 4212 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ≠ ∅ → ¬ 𝑦 ∈
{∅}) |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → ¬ 𝑦 ∈ {∅}) |
| 94 | 93 | 3adant1 1079 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → ¬ 𝑦 ∈ {∅}) |
| 95 | 89, 94 | eldifd 3585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ∈ (ran 𝐹 ∖ {∅})) |
| 96 | 95, 33 | syl6eleqr 2712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ∈ 𝐷) |
| 97 | 96 | 3exp 1264 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝑦 = 𝐵 → 𝑦 ∈ 𝐷))) |
| 98 | 1, 82, 97 | rexlimd 3026 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑥 ∈ 𝐶 𝑦 = 𝐵 → 𝑦 ∈ 𝐷)) |
| 99 | 98 | imp 445 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵) → 𝑦 ∈ 𝐷) |
| 100 | 76, 81, 99 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) → 𝑦 ∈ 𝐷) |
| 101 | 100 | ralrimiva 2966 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)𝑦 ∈ 𝐷) |
| 102 | | dfss3 3592 |
. . . . 5
⊢ (ran
(𝑥 ∈ 𝐶 ↦ 𝐵) ⊆ 𝐷 ↔ ∀𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)𝑦 ∈ 𝐷) |
| 103 | 101, 102 | sylibr 224 |
. . . 4
⊢ (𝜑 → ran (𝑥 ∈ 𝐶 ↦ 𝐵) ⊆ 𝐷) |
| 104 | 75, 103 | eqssd 3620 |
. . 3
⊢ (𝜑 → 𝐷 = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 105 | 29, 30, 104 | f1oeq123d 6133 |
. 2
⊢ (𝜑 → ((𝐹 ↾ 𝐶):𝐶–1-1-onto→𝐷 ↔ (𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1-onto→ran
(𝑥 ∈ 𝐶 ↦ 𝐵))) |
| 106 | 24, 105 | mpbird 247 |
1
⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1-onto→𝐷) |