| Step | Hyp | Ref
| Expression |
| 1 | | uniiun 4573 |
. . 3
⊢ ∪ 𝐵 =
∪ 𝑦 ∈ 𝐵 𝑦 |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝐵 =
∪ 𝑦 ∈ 𝐵 𝑦) |
| 3 | | simpl 473 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑦 ∈ 𝐵) → 𝐹:𝐴–onto→(𝐵 ∪ {∅})) |
| 4 | | elun1 3780 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐵 ∪ {∅})) |
| 5 | 4 | adantl 482 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ (𝐵 ∪ {∅})) |
| 6 | | foelrni 6244 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑦 ∈ (𝐵 ∪ {∅})) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 7 | 3, 5, 6 | syl2anc 693 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 8 | | eqimss2 3658 |
. . . . . . 7
⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 ⊆ (𝐹‘𝑥)) |
| 9 | 8 | reximi 3011 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 10 | 7, 9 | syl 17 |
. . . . 5
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 11 | 10 | ralrimiva 2966 |
. . . 4
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 12 | | iunss2 4565 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥) → ∪
𝑦 ∈ 𝐵 𝑦 ⊆ ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 13 | 11, 12 | syl 17 |
. . 3
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝑦 ∈ 𝐵 𝑦 ⊆ ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 14 | | simpl 473 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → 𝐹:𝐴–onto→(𝐵 ∪ {∅})) |
| 15 | | uneq1 3760 |
. . . . . . . . 9
⊢ (𝐵 = ∅ → (𝐵 ∪ {∅}) = (∅
∪ {∅})) |
| 16 | | 0un 39215 |
. . . . . . . . . 10
⊢ (∅
∪ {∅}) = {∅} |
| 17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ (𝐵 = ∅ → (∅ ∪
{∅}) = {∅}) |
| 18 | 15, 17 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝐵 = ∅ → (𝐵 ∪ {∅}) =
{∅}) |
| 19 | 18 | adantl 482 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → (𝐵 ∪ {∅}) =
{∅}) |
| 20 | | foeq3 6113 |
. . . . . . 7
⊢ ((𝐵 ∪ {∅}) = {∅}
→ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) ↔ 𝐹:𝐴–onto→{∅})) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → (𝐹:𝐴–onto→(𝐵 ∪ {∅}) ↔ 𝐹:𝐴–onto→{∅})) |
| 22 | 14, 21 | mpbid 222 |
. . . . 5
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → 𝐹:𝐴–onto→{∅}) |
| 23 | | unisn0 39222 |
. . . . . . . . 9
⊢ ∪ {∅} = ∅ |
| 24 | 23 | eqcomi 2631 |
. . . . . . . 8
⊢ ∅ =
∪ {∅} |
| 25 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→{∅} → ∅ = ∪ {∅}) |
| 26 | | founiiun 39360 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→{∅} → ∪
{∅} = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 27 | 25, 26 | eqtr2d 2657 |
. . . . . 6
⊢ (𝐹:𝐴–onto→{∅} → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∅) |
| 28 | | 0ss 3972 |
. . . . . . 7
⊢ ∅
⊆ ∪ 𝑦 ∈ 𝐵 𝑦 |
| 29 | 28 | a1i 11 |
. . . . . 6
⊢ (𝐹:𝐴–onto→{∅} → ∅ ⊆ ∪ 𝑦 ∈ 𝐵 𝑦) |
| 30 | 27, 29 | eqsstrd 3639 |
. . . . 5
⊢ (𝐹:𝐴–onto→{∅} → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 31 | 22, 30 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 32 | | ssid 3624 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ⊆ (𝐹‘𝑥) |
| 33 | | sseq2 3627 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑥) ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑥))) |
| 34 | 33 | rspcev 3309 |
. . . . . . . . 9
⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 35 | 32, 34 | mpan2 707 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) ∈ 𝐵 → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 36 | 35 | adantl 482 |
. . . . . . 7
⊢ ((((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 37 | | simpl 473 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴)) |
| 38 | | fof 6115 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → 𝐹:𝐴⟶(𝐵 ∪ {∅})) |
| 39 | 38 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐵 ∪ {∅})) |
| 40 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) ∈ (𝐵 ∪ {∅})) |
| 41 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → ¬ (𝐹‘𝑥) ∈ 𝐵) |
| 42 | | elunnel1 3754 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) ∈ (𝐵 ∪ {∅}) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) ∈ {∅}) |
| 43 | 40, 41, 42 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) ∈ {∅}) |
| 44 | | elsni 4194 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ {∅} → (𝐹‘𝑥) = ∅) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) = ∅) |
| 46 | 45 | adantllr 755 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) = ∅) |
| 47 | | neq0 3930 |
. . . . . . . . . . . . 13
⊢ (¬
𝐵 = ∅ ↔
∃𝑦 𝑦 ∈ 𝐵) |
| 48 | 47 | biimpi 206 |
. . . . . . . . . . . 12
⊢ (¬
𝐵 = ∅ →
∃𝑦 𝑦 ∈ 𝐵) |
| 49 | 48 | adantr 481 |
. . . . . . . . . . 11
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → ∃𝑦 𝑦 ∈ 𝐵) |
| 50 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑥) = ∅ ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 51 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑥) = ∅ → (𝐹‘𝑥) = ∅) |
| 52 | | 0ss 3972 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
⊆ 𝑦 |
| 53 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑥) = ∅ → ∅ ⊆ 𝑦) |
| 54 | 51, 53 | eqsstrd 3639 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) = ∅ → (𝐹‘𝑥) ⊆ 𝑦) |
| 55 | 54 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑥) = ∅ ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑥) ⊆ 𝑦) |
| 56 | 50, 55 | jca 554 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑥) = ∅ ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦)) |
| 57 | 56 | ex 450 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) = ∅ → (𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦))) |
| 58 | 57 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → (𝑦 ∈ 𝐵 → (𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦))) |
| 59 | 58 | eximdv 1846 |
. . . . . . . . . . 11
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → (∃𝑦 𝑦 ∈ 𝐵 → ∃𝑦(𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦))) |
| 60 | 49, 59 | mpd 15 |
. . . . . . . . . 10
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → ∃𝑦(𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦)) |
| 61 | | df-rex 2918 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐵 (𝐹‘𝑥) ⊆ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ 𝑦)) |
| 62 | 60, 61 | sylibr 224 |
. . . . . . . . 9
⊢ ((¬
𝐵 = ∅ ∧ (𝐹‘𝑥) = ∅) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 63 | 62 | ad4ant24 1298 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) = ∅) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 64 | 37, 46, 63 | syl2anc 693 |
. . . . . . 7
⊢ ((((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) ∧ ¬ (𝐹‘𝑥) ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 65 | 36, 64 | pm2.61dan 832 |
. . . . . 6
⊢ (((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 66 | 65 | ralrimiva 2966 |
. . . . 5
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 67 | | iunss2 4565 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦 → ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 68 | 66, 67 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴–onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 69 | 31, 68 | pm2.61dan 832 |
. . 3
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 70 | 13, 69 | eqssd 3620 |
. 2
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝑦 ∈ 𝐵 𝑦 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 71 | 2, 70 | eqtrd 2656 |
1
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝐵 =
∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |