MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjpss Structured version   Visualization version   GIF version

Theorem disjpss 4028
Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
disjpss (((𝐴𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴𝐵))

Proof of Theorem disjpss
StepHypRef Expression
1 ssid 3624 . . . . . . . 8 𝐵𝐵
21biantru 526 . . . . . . 7 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐵))
3 ssin 3835 . . . . . . 7 ((𝐵𝐴𝐵𝐵) ↔ 𝐵 ⊆ (𝐴𝐵))
42, 3bitri 264 . . . . . 6 (𝐵𝐴𝐵 ⊆ (𝐴𝐵))
5 sseq2 3627 . . . . . 6 ((𝐴𝐵) = ∅ → (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 ⊆ ∅))
64, 5syl5bb 272 . . . . 5 ((𝐴𝐵) = ∅ → (𝐵𝐴𝐵 ⊆ ∅))
7 ss0 3974 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
86, 7syl6bi 243 . . . 4 ((𝐴𝐵) = ∅ → (𝐵𝐴𝐵 = ∅))
98necon3ad 2807 . . 3 ((𝐴𝐵) = ∅ → (𝐵 ≠ ∅ → ¬ 𝐵𝐴))
109imp 445 . 2 (((𝐴𝐵) = ∅ ∧ 𝐵 ≠ ∅) → ¬ 𝐵𝐴)
11 nsspssun 3857 . . 3 𝐵𝐴𝐴 ⊊ (𝐵𝐴))
12 uncom 3757 . . . 4 (𝐵𝐴) = (𝐴𝐵)
1312psseq2i 3697 . . 3 (𝐴 ⊊ (𝐵𝐴) ↔ 𝐴 ⊊ (𝐴𝐵))
1411, 13bitri 264 . 2 𝐵𝐴𝐴 ⊊ (𝐴𝐵))
1510, 14sylib 208 1 (((𝐴𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wne 2794  cun 3572  cin 3573  wss 3574  wpss 3575  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916
This theorem is referenced by:  isfin1-3  9208
  Copyright terms: Public domain W3C validator