MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-3 Structured version   Visualization version   GIF version

Theorem isfin1-3 9208
Description: A set is I-finite iff every system of subsets contains a maximal subset. Definition I of [Levy58] p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-3 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))

Proof of Theorem isfin1-3
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 porpss 6941 . . . 4 [] Po 𝒫 𝐴
2 cnvpo 5673 . . . 4 ( [] Po 𝒫 𝐴 [] Po 𝒫 𝐴)
31, 2mpbi 220 . . 3 [] Po 𝒫 𝐴
4 pwfi 8261 . . . 4 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
54biimpi 206 . . 3 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
6 frfi 8205 . . 3 (( [] Po 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ Fin) → [] Fr 𝒫 𝐴)
73, 5, 6sylancr 695 . 2 (𝐴 ∈ Fin → [] Fr 𝒫 𝐴)
8 inss2 3834 . . . . . 6 (Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
9 pwexg 4850 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
10 ssexg 4804 . . . . . 6 (((Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (Fin ∩ 𝒫 𝐴) ∈ V)
118, 9, 10sylancr 695 . . . . 5 (𝐴𝑉 → (Fin ∩ 𝒫 𝐴) ∈ V)
12 0fin 8188 . . . . . . . 8 ∅ ∈ Fin
13 0elpw 4834 . . . . . . . 8 ∅ ∈ 𝒫 𝐴
14 elin 3796 . . . . . . . 8 (∅ ∈ (Fin ∩ 𝒫 𝐴) ↔ (∅ ∈ Fin ∧ ∅ ∈ 𝒫 𝐴))
1512, 13, 14mpbir2an 955 . . . . . . 7 ∅ ∈ (Fin ∩ 𝒫 𝐴)
1615ne0ii 3923 . . . . . 6 (Fin ∩ 𝒫 𝐴) ≠ ∅
17 fri 5076 . . . . . 6 ((((Fin ∩ 𝒫 𝐴) ∈ V ∧ [] Fr 𝒫 𝐴) ∧ ((Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (Fin ∩ 𝒫 𝐴) ≠ ∅)) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
188, 16, 17mpanr12 721 . . . . 5 (((Fin ∩ 𝒫 𝐴) ∈ V ∧ [] Fr 𝒫 𝐴) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
1911, 18sylan 488 . . . 4 ((𝐴𝑉 [] Fr 𝒫 𝐴) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
2019ex 450 . . 3 (𝐴𝑉 → ( [] Fr 𝒫 𝐴 → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏))
21 inss1 3833 . . . . . 6 (Fin ∩ 𝒫 𝐴) ⊆ Fin
22 simpl 473 . . . . . 6 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝑏 ∈ (Fin ∩ 𝒫 𝐴))
2321, 22sseldi 3601 . . . . 5 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝑏 ∈ Fin)
24 ralnex 2992 . . . . . . . 8 (∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏 ↔ ¬ ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
2521sseli 3599 . . . . . . . . . . . . . 14 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏 ∈ Fin)
2625adantr 481 . . . . . . . . . . . . 13 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏 ∈ Fin)
27 snfi 8038 . . . . . . . . . . . . 13 {𝑑} ∈ Fin
28 unfi 8227 . . . . . . . . . . . . 13 ((𝑏 ∈ Fin ∧ {𝑑} ∈ Fin) → (𝑏 ∪ {𝑑}) ∈ Fin)
2926, 27, 28sylancl 694 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ Fin)
30 elin 3796 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) ↔ (𝑏 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝐴))
3130simprbi 480 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏 ∈ 𝒫 𝐴)
3231elpwid 4170 . . . . . . . . . . . . . . 15 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏𝐴)
3332adantr 481 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏𝐴)
34 snssi 4339 . . . . . . . . . . . . . . 15 (𝑑𝐴 → {𝑑} ⊆ 𝐴)
3534ad2antrl 764 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → {𝑑} ⊆ 𝐴)
3633, 35unssd 3789 . . . . . . . . . . . . 13 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ⊆ 𝐴)
37 vex 3203 . . . . . . . . . . . . . . 15 𝑏 ∈ V
38 snex 4908 . . . . . . . . . . . . . . 15 {𝑑} ∈ V
3937, 38unex 6956 . . . . . . . . . . . . . 14 (𝑏 ∪ {𝑑}) ∈ V
4039elpw 4164 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑑}) ∈ 𝒫 𝐴 ↔ (𝑏 ∪ {𝑑}) ⊆ 𝐴)
4136, 40sylibr 224 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ 𝒫 𝐴)
4229, 41elind 3798 . . . . . . . . . . 11 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ (Fin ∩ 𝒫 𝐴))
43 disjsn 4246 . . . . . . . . . . . . . . 15 ((𝑏 ∩ {𝑑}) = ∅ ↔ ¬ 𝑑𝑏)
4443biimpri 218 . . . . . . . . . . . . . 14 𝑑𝑏 → (𝑏 ∩ {𝑑}) = ∅)
45 vex 3203 . . . . . . . . . . . . . . 15 𝑑 ∈ V
4645snnz 4309 . . . . . . . . . . . . . 14 {𝑑} ≠ ∅
47 disjpss 4028 . . . . . . . . . . . . . 14 (((𝑏 ∩ {𝑑}) = ∅ ∧ {𝑑} ≠ ∅) → 𝑏 ⊊ (𝑏 ∪ {𝑑}))
4844, 46, 47sylancl 694 . . . . . . . . . . . . 13 𝑑𝑏𝑏 ⊊ (𝑏 ∪ {𝑑}))
4948ad2antll 765 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏 ⊊ (𝑏 ∪ {𝑑}))
5039, 37brcnv 5305 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑑}) [] 𝑏𝑏 [] (𝑏 ∪ {𝑑}))
5139brrpss 6940 . . . . . . . . . . . . 13 (𝑏 [] (𝑏 ∪ {𝑑}) ↔ 𝑏 ⊊ (𝑏 ∪ {𝑑}))
5250, 51bitri 264 . . . . . . . . . . . 12 ((𝑏 ∪ {𝑑}) [] 𝑏𝑏 ⊊ (𝑏 ∪ {𝑑}))
5349, 52sylibr 224 . . . . . . . . . . 11 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) [] 𝑏)
54 breq1 4656 . . . . . . . . . . . 12 (𝑐 = (𝑏 ∪ {𝑑}) → (𝑐 [] 𝑏 ↔ (𝑏 ∪ {𝑑}) [] 𝑏))
5554rspcev 3309 . . . . . . . . . . 11 (((𝑏 ∪ {𝑑}) ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑏 ∪ {𝑑}) [] 𝑏) → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
5642, 53, 55syl2anc 693 . . . . . . . . . 10 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
5756expr 643 . . . . . . . . 9 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (¬ 𝑑𝑏 → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏))
5857con1d 139 . . . . . . . 8 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (¬ ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏𝑑𝑏))
5924, 58syl5bi 232 . . . . . . 7 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏𝑑𝑏))
6059impancom 456 . . . . . 6 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → (𝑑𝐴𝑑𝑏))
6160ssrdv 3609 . . . . 5 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝐴𝑏)
62 ssfi 8180 . . . . 5 ((𝑏 ∈ Fin ∧ 𝐴𝑏) → 𝐴 ∈ Fin)
6323, 61, 62syl2anc 693 . . . 4 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝐴 ∈ Fin)
6463rexlimiva 3028 . . 3 (∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏𝐴 ∈ Fin)
6520, 64syl6 35 . 2 (𝐴𝑉 → ( [] Fr 𝒫 𝐴𝐴 ∈ Fin))
667, 65impbid2 216 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cun 3572  cin 3573  wss 3574  wpss 3575  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653   Po wpo 5033   Fr wfr 5070  ccnv 5113   [] crpss 6936  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  isfin1-4  9209  fin12  9235
  Copyright terms: Public domain W3C validator