| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjpss | Structured version Visualization version Unicode version | ||
| Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| disjpss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3624 |
. . . . . . . 8
| |
| 2 | 1 | biantru 526 |
. . . . . . 7
|
| 3 | ssin 3835 |
. . . . . . 7
| |
| 4 | 2, 3 | bitri 264 |
. . . . . 6
|
| 5 | sseq2 3627 |
. . . . . 6
| |
| 6 | 4, 5 | syl5bb 272 |
. . . . 5
|
| 7 | ss0 3974 |
. . . . 5
| |
| 8 | 6, 7 | syl6bi 243 |
. . . 4
|
| 9 | 8 | necon3ad 2807 |
. . 3
|
| 10 | 9 | imp 445 |
. 2
|
| 11 | nsspssun 3857 |
. . 3
| |
| 12 | uncom 3757 |
. . . 4
| |
| 13 | 12 | psseq2i 3697 |
. . 3
|
| 14 | 11, 13 | bitri 264 |
. 2
|
| 15 | 10, 14 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 |
| This theorem is referenced by: isfin1-3 9208 |
| Copyright terms: Public domain | W3C validator |