Proof of Theorem divrngcl
| Step | Hyp | Ref
| Expression |
| 1 | | isdivrng1.1 |
. . 3
⊢ 𝐺 = (1st ‘𝑅) |
| 2 | | isdivrng1.2 |
. . 3
⊢ 𝐻 = (2nd ‘𝑅) |
| 3 | | isdivrng1.3 |
. . 3
⊢ 𝑍 = (GId‘𝐺) |
| 4 | | isdivrng1.4 |
. . 3
⊢ 𝑋 = ran 𝐺 |
| 5 | 1, 2, 3, 4 | isdrngo1 33755 |
. 2
⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
| 6 | | ovres 6800 |
. . . . 5
⊢ ((𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) = (𝐴𝐻𝐵)) |
| 7 | 6 | adantl 482 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) = (𝐴𝐻𝐵)) |
| 8 | | eqid 2622 |
. . . . . . . . 9
⊢ ran
(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 9 | 8 | grpocl 27354 |
. . . . . . . 8
⊢ (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 10 | 9 | 3expib 1268 |
. . . . . . 7
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ((𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))) |
| 11 | 10 | adantl 482 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))) |
| 12 | | grporndm 27364 |
. . . . . . . . . 10
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 13 | 12 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 14 | | difss 3737 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∖ {𝑍}) ⊆ 𝑋 |
| 15 | | xpss12 5225 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∖ {𝑍}) ⊆ 𝑋 ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)) |
| 16 | 14, 14, 15 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋) |
| 17 | 1, 2, 4 | rngosm 33699 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋) |
| 18 | | fdm 6051 |
. . . . . . . . . . . . . . 15
⊢ (𝐻:(𝑋 × 𝑋)⟶𝑋 → dom 𝐻 = (𝑋 × 𝑋)) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ RingOps → dom 𝐻 = (𝑋 × 𝑋)) |
| 20 | 16, 19 | syl5sseqr 3654 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ RingOps → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻) |
| 21 | | ssdmres 5420 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻 ↔ dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 22 | 20, 21 | sylib 208 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ RingOps → dom
(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 23 | 22 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 24 | 23 | dmeqd 5326 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 25 | | dmxpid 5345 |
. . . . . . . . . 10
⊢ dom
((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = (𝑋 ∖ {𝑍}) |
| 26 | 24, 25 | syl6eq 2672 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍})) |
| 27 | 13, 26 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍})) |
| 28 | 27 | eleq2d 2687 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝐴 ∈ (𝑋 ∖ {𝑍}))) |
| 29 | 27 | eleq2d 2687 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝐵 ∈ (𝑋 ∖ {𝑍}))) |
| 30 | 28, 29 | anbi12d 747 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ 𝐵 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) ↔ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})))) |
| 31 | 27 | eleq2d 2687 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ (𝑋 ∖ {𝑍}))) |
| 32 | 11, 30, 31 | 3imtr3d 282 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ (𝑋 ∖ {𝑍}))) |
| 33 | 32 | imp 445 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))) → (𝐴(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝐵) ∈ (𝑋 ∖ {𝑍})) |
| 34 | 7, 33 | eqeltrrd 2702 |
. . 3
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ (𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍}))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍})) |
| 35 | 34 | 3impb 1260 |
. 2
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍})) |
| 36 | 5, 35 | syl3an1b 1362 |
1
⊢ ((𝑅 ∈ DivRingOps ∧ 𝐴 ∈ (𝑋 ∖ {𝑍}) ∧ 𝐵 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ {𝑍})) |