MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatel Structured version   Visualization version   GIF version

Theorem dmatel 20299
Description: A 𝑁 x 𝑁 diagonal matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatel ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝑖,𝑀,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑉(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem dmatel
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dmatval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 dmatval.b . . . 4 𝐵 = (Base‘𝐴)
3 dmatval.0 . . . 4 0 = (0g𝑅)
4 dmatval.d . . . 4 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatval 20298 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
65eleq2d 2687 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
7 oveq 6656 . . . . . 6 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
87eqeq1d 2624 . . . . 5 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = 0 ↔ (𝑖𝑀𝑗) = 0 ))
98imbi2d 330 . . . 4 (𝑚 = 𝑀 → ((𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
1092ralbidv 2989 . . 3 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
1110elrab 3363 . 2 (𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
126, 11syl6bb 276 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857  0gc0g 16100   Mat cmat 20213   DMat cdmat 20294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-dmat 20296
This theorem is referenced by:  dmatmat  20300  dmatid  20301  dmatelnd  20302  dmatsubcl  20304  dmatscmcl  20309
  Copyright terms: Public domain W3C validator