MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatel Structured version   Visualization version   Unicode version

Theorem dmatel 20299
Description: A  N x  N diagonal matrix over (a ring)  R. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a  |-  A  =  ( N Mat  R )
dmatval.b  |-  B  =  ( Base `  A
)
dmatval.0  |-  .0.  =  ( 0g `  R )
dmatval.d  |-  D  =  ( N DMat  R )
Assertion
Ref Expression
dmatel  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( M  e.  D  <->  ( M  e.  B  /\  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i M j )  =  .0.  )
) ) )
Distinct variable groups:    i, N, j    R, i, j    i, M, j
Allowed substitution hints:    A( i, j)    B( i, j)    D( i, j)    V( i, j)    .0. ( i, j)

Proof of Theorem dmatel
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dmatval.a . . . 4  |-  A  =  ( N Mat  R )
2 dmatval.b . . . 4  |-  B  =  ( Base `  A
)
3 dmatval.0 . . . 4  |-  .0.  =  ( 0g `  R )
4 dmatval.d . . . 4  |-  D  =  ( N DMat  R )
51, 2, 3, 4dmatval 20298 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  D  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i m j )  =  .0.  ) } )
65eleq2d 2687 . 2  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( M  e.  D  <->  M  e.  { m  e.  B  |  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i m j )  =  .0.  ) } ) )
7 oveq 6656 . . . . . 6  |-  ( m  =  M  ->  (
i m j )  =  ( i M j ) )
87eqeq1d 2624 . . . . 5  |-  ( m  =  M  ->  (
( i m j )  =  .0.  <->  ( i M j )  =  .0.  ) )
98imbi2d 330 . . . 4  |-  ( m  =  M  ->  (
( i  =/=  j  ->  ( i m j )  =  .0.  )  <->  ( i  =/=  j  -> 
( i M j )  =  .0.  )
) )
1092ralbidv 2989 . . 3  |-  ( m  =  M  ->  ( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i m j )  =  .0.  )  <->  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i M j )  =  .0.  )
) )
1110elrab 3363 . 2  |-  ( M  e.  { m  e.  B  |  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i m j )  =  .0.  ) }  <->  ( M  e.  B  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i M j )  =  .0.  ) ) )
126, 11syl6bb 276 1  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( M  e.  D  <->  ( M  e.  B  /\  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i M j )  =  .0.  )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857   0gc0g 16100   Mat cmat 20213   DMat cdmat 20294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-dmat 20296
This theorem is referenced by:  dmatmat  20300  dmatid  20301  dmatelnd  20302  dmatsubcl  20304  dmatscmcl  20309
  Copyright terms: Public domain W3C validator