MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfco Structured version   Visualization version   GIF version

Theorem dmfco 6272
Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
dmfco ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))

Proof of Theorem dmfco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5320 . . . 4 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺)))
2 vex 3203 . . . . . 6 𝑦 ∈ V
3 opelco2g 5289 . . . . . 6 ((𝐴 ∈ dom 𝐺𝑦 ∈ V) → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
42, 3mpan2 707 . . . . 5 (𝐴 ∈ dom 𝐺 → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
54exbidv 1850 . . . 4 (𝐴 ∈ dom 𝐺 → (∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
61, 5bitrd 268 . . 3 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
76adantl 482 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
8 fvex 6201 . . . 4 (𝐺𝐴) ∈ V
98eldm2 5322 . . 3 ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹)
10 opeq1 4402 . . . . . . 7 (𝑥 = (𝐺𝐴) → ⟨𝑥, 𝑦⟩ = ⟨(𝐺𝐴), 𝑦⟩)
1110eleq1d 2686 . . . . . 6 (𝑥 = (𝐺𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
128, 11ceqsexv 3242 . . . . 5 (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹)
13 eqcom 2629 . . . . . . . 8 (𝑥 = (𝐺𝐴) ↔ (𝐺𝐴) = 𝑥)
14 funopfvb 6239 . . . . . . . 8 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
1513, 14syl5bb 272 . . . . . . 7 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝑥 = (𝐺𝐴) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
1615anbi1d 741 . . . . . 6 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1716exbidv 1850 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1812, 17syl5bbr 274 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1918exbidv 1850 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
209, 19syl5bb 272 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
217, 20bitr4d 271 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cop 4183  dom cdm 5114  ccom 5118  Fun wfun 5882  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  hoicvr  40762  funressnfv  41208  dmfcoafv  41255  afvco2  41256
  Copyright terms: Public domain W3C validator