| Step | Hyp | Ref
| Expression |
| 1 | | relres 5426 |
. . 3
⊢ Rel
(𝐹 ↾ {(𝐺‘𝑋)}) |
| 2 | 1 | a1i 11 |
. 2
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Rel (𝐹 ↾ {(𝐺‘𝑋)})) |
| 3 | | dmfco 6272 |
. . . . . . . . 9
⊢ ((Fun
𝐺 ∧ 𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺‘𝑋) ∈ dom 𝐹)) |
| 4 | 3 | biimpd 219 |
. . . . . . . 8
⊢ ((Fun
𝐺 ∧ 𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (𝐺‘𝑋) ∈ dom 𝐹)) |
| 5 | 4 | funfni 5991 |
. . . . . . 7
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (𝐺‘𝑋) ∈ dom 𝐹)) |
| 6 | | dmressnsn 5438 |
. . . . . . . 8
⊢ ((𝐺‘𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)}) |
| 7 | | eleq2 2690 |
. . . . . . . . . 10
⊢ (dom
(𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) ↔ 𝑥 ∈ {(𝐺‘𝑋)})) |
| 8 | | velsn 4193 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {(𝐺‘𝑋)} ↔ 𝑥 = (𝐺‘𝑋)) |
| 9 | | dmressnsn 5438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → dom ((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋}) |
| 10 | | dffun7 5915 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Fun
((𝐹 ∘ 𝐺) ↾ {𝑋}) ↔ (Rel ((𝐹 ∘ 𝐺) ↾ {𝑋}) ∧ ∀𝑥 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
| 11 | | snidg 4206 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → 𝑋 ∈ {𝑋}) |
| 12 | 11 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) → 𝑋 ∈ {𝑋}) |
| 13 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({𝑋} = dom ((𝐹 ∘ 𝐺) ↾ {𝑋}) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋}))) |
| 14 | 13 | eqcoms 2630 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋}))) |
| 15 | 14 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋}))) |
| 16 | 12, 15 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) → 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋})) |
| 17 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝐺‘𝑋) ∈ V |
| 18 | 17 | isseti 3209 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
∃𝑧 𝑧 = (𝐺‘𝑋) |
| 19 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑧 = (𝐺‘𝑋) ↔ (𝐺‘𝑋) = 𝑧) |
| 20 | | fnbrfvb 6236 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐺‘𝑋) = 𝑧 ↔ 𝑋𝐺𝑧)) |
| 21 | 19, 20 | syl5bb 272 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑧 = (𝐺‘𝑋) ↔ 𝑋𝐺𝑧)) |
| 22 | 21 | biimpd 219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑧 = (𝐺‘𝑋) → 𝑋𝐺𝑧)) |
| 23 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝐺‘𝑋) = 𝑧 → ((𝐺‘𝑋)𝐹𝑦 ↔ 𝑧𝐹𝑦)) |
| 24 | 23 | eqcoms 2630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑧 = (𝐺‘𝑋) → ((𝐺‘𝑋)𝐹𝑦 ↔ 𝑧𝐹𝑦)) |
| 25 | 24 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐺‘𝑋)𝐹𝑦 → (𝑧 = (𝐺‘𝑋) → 𝑧𝐹𝑦)) |
| 26 | 22, 25 | anim12ii 594 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → (𝑧 = (𝐺‘𝑋) → (𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
| 27 | 26 | eximdv 1846 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → (∃𝑧 𝑧 = (𝐺‘𝑋) → ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
| 28 | 18, 27 | mpi 20 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
| 29 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) |
| 30 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 𝑦 ∈ V |
| 31 | | brcog 5288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ V) → (𝑋(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
| 32 | 29, 30, 31 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
| 33 | 32 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → (𝑋(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
| 34 | 28, 33 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → 𝑋(𝐹 ∘ 𝐺)𝑦) |
| 35 | | snidg 4206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ {𝑋}) |
| 36 | 35 | biantrud 528 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑋 ∈ 𝐴 → (𝑋(𝐹 ∘ 𝐺)𝑦 ↔ (𝑋(𝐹 ∘ 𝐺)𝑦 ∧ 𝑋 ∈ {𝑋}))) |
| 37 | 30 | brres 5402 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ (𝑋(𝐹 ∘ 𝐺)𝑦 ∧ 𝑋 ∈ {𝑋})) |
| 38 | 36, 37 | syl6rbbr 279 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑋 ∈ 𝐴 → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 39 | 38 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 40 | 34, 39 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → 𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦) |
| 41 | 40 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐺‘𝑋)𝐹𝑦 → 𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
| 42 | 41 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐺‘𝑋)𝐹𝑦 → 𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
| 43 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑋 = 𝑥 → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
| 44 | 43 | eqcoms 2630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 𝑋 → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
| 45 | 44 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
| 46 | 42, 45 | sylibd 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐺‘𝑋)𝐹𝑦 → 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
| 47 | 46 | alrimiv 1855 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∀𝑦((𝐺‘𝑋)𝐹𝑦 → 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
| 48 | | moim 2519 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∀𝑦((𝐺‘𝑋)𝐹𝑦 → 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦) → (∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)) |
| 50 | 49 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺‘𝑋)𝐹𝑦))) |
| 51 | 50 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) → (∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦))) |
| 52 | 16, 51 | rspcimdv 3310 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) → (∀𝑥 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦))) |
| 53 | 52 | ex 450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (∀𝑥 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)))) |
| 54 | 53 | com13 88 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑥 ∈
dom ((𝐹 ∘ 𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (dom ((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)))) |
| 55 | 54 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Rel
((𝐹 ∘ 𝐺) ↾ {𝑋}) ∧ ∀𝑥 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (dom ((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)))) |
| 56 | 10, 55 | sylbi 207 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
((𝐹 ∘ 𝐺) ↾ {𝑋}) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (dom ((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)))) |
| 57 | 56 | com13 88 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (Fun ((𝐹 ∘ 𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)))) |
| 58 | 9, 57 | mpcom 38 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (Fun ((𝐹 ∘ 𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦))) |
| 59 | 58 | imp31 448 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦) |
| 60 | 17 | snid 4208 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)} |
| 61 | 60 | biantru 526 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑋)𝐹𝑦 ↔ ((𝐺‘𝑋)𝐹𝑦 ∧ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)})) |
| 62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐺‘𝑋)𝐹𝑦 ↔ ((𝐺‘𝑋)𝐹𝑦 ∧ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)}))) |
| 63 | 62 | mobidv 2491 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (∃*𝑦(𝐺‘𝑋)𝐹𝑦 ↔ ∃*𝑦((𝐺‘𝑋)𝐹𝑦 ∧ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)}))) |
| 64 | 59, 63 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦((𝐺‘𝑋)𝐹𝑦 ∧ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)})) |
| 65 | 64 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = (𝐺‘𝑋) ∧ ((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴))) → ∃*𝑦((𝐺‘𝑋)𝐹𝑦 ∧ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)})) |
| 66 | | breq1 4656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐺‘𝑋) → (𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦 ↔ (𝐺‘𝑋)(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
| 67 | 30 | brres 5402 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑋)(𝐹 ↾ {(𝐺‘𝑋)})𝑦 ↔ ((𝐺‘𝑋)𝐹𝑦 ∧ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)})) |
| 68 | 66, 67 | syl6rbb 277 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝐺‘𝑋) → (((𝐺‘𝑋)𝐹𝑦 ∧ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)}) ↔ 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
| 69 | 68 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = (𝐺‘𝑋) ∧ ((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴))) → (((𝐺‘𝑋)𝐹𝑦 ∧ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)}) ↔ 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
| 70 | 69 | mobidv 2491 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = (𝐺‘𝑋) ∧ ((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴))) → (∃*𝑦((𝐺‘𝑋)𝐹𝑦 ∧ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)}) ↔ ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
| 71 | 65, 70 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (𝐺‘𝑋) ∧ ((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴))) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦) |
| 72 | 71 | ex 450 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑋) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
| 73 | 8, 72 | sylbi 207 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {(𝐺‘𝑋)} → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
| 74 | 7, 73 | syl6bi 243 |
. . . . . . . . 9
⊢ (dom
(𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))) |
| 75 | 74 | com23 86 |
. . . . . . . 8
⊢ (dom
(𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)} → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))) |
| 76 | 6, 75 | syl 17 |
. . . . . . 7
⊢ ((𝐺‘𝑋) ∈ dom 𝐹 → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))) |
| 77 | 5, 76 | syl6com 37 |
. . . . . 6
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)))) |
| 78 | 77 | a1d 25 |
. . . . 5
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (Fun ((𝐹 ∘ 𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))))) |
| 79 | 78 | imp31 448 |
. . . 4
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))) |
| 80 | 79 | pm2.43i 52 |
. . 3
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
| 81 | 80 | ralrimiv 2965 |
. 2
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦) |
| 82 | | dffun7 5915 |
. 2
⊢ (Fun
(𝐹 ↾ {(𝐺‘𝑋)}) ↔ (Rel (𝐹 ↾ {(𝐺‘𝑋)}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
| 83 | 2, 81, 82 | sylanbrc 698 |
1
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun (𝐹 ↾ {(𝐺‘𝑋)})) |