| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocival | Structured version Visualization version GIF version | ||
| Description: The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 23368. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| Ref | Expression |
|---|---|
| dya2iocival | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6657 | . . . 4 ⊢ (𝑢 = 𝑋 → (𝑢 / (2↑𝑚)) = (𝑋 / (2↑𝑚))) | |
| 2 | oveq1 6657 | . . . . 5 ⊢ (𝑢 = 𝑋 → (𝑢 + 1) = (𝑋 + 1)) | |
| 3 | 2 | oveq1d 6665 | . . . 4 ⊢ (𝑢 = 𝑋 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑚))) |
| 4 | 1, 3 | oveq12d 6668 | . . 3 ⊢ (𝑢 = 𝑋 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚)))) |
| 5 | oveq2 6658 | . . . . 5 ⊢ (𝑚 = 𝑁 → (2↑𝑚) = (2↑𝑁)) | |
| 6 | 5 | oveq2d 6666 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑋 / (2↑𝑚)) = (𝑋 / (2↑𝑁))) |
| 7 | 5 | oveq2d 6666 | . . . 4 ⊢ (𝑚 = 𝑁 → ((𝑋 + 1) / (2↑𝑚)) = ((𝑋 + 1) / (2↑𝑁))) |
| 8 | 6, 7 | oveq12d 6668 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝑋 / (2↑𝑚))[,)((𝑋 + 1) / (2↑𝑚))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| 9 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 10 | oveq1 6657 | . . . . . 6 ⊢ (𝑢 = 𝑥 → (𝑢 / (2↑𝑚)) = (𝑥 / (2↑𝑚))) | |
| 11 | oveq1 6657 | . . . . . . 7 ⊢ (𝑢 = 𝑥 → (𝑢 + 1) = (𝑥 + 1)) | |
| 12 | 11 | oveq1d 6665 | . . . . . 6 ⊢ (𝑢 = 𝑥 → ((𝑢 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑚))) |
| 13 | 10, 12 | oveq12d 6668 | . . . . 5 ⊢ (𝑢 = 𝑥 → ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚)))) |
| 14 | oveq2 6658 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛)) | |
| 15 | 14 | oveq2d 6666 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑥 / (2↑𝑚)) = (𝑥 / (2↑𝑛))) |
| 16 | 14 | oveq2d 6666 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ((𝑥 + 1) / (2↑𝑚)) = ((𝑥 + 1) / (2↑𝑛))) |
| 17 | 15, 16 | oveq12d 6668 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝑥 / (2↑𝑚))[,)((𝑥 + 1) / (2↑𝑚))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| 18 | 13, 17 | cbvmpt2v 6735 | . . . 4 ⊢ (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚)))) = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| 19 | 9, 18 | eqtr4i 2647 | . . 3 ⊢ 𝐼 = (𝑢 ∈ ℤ, 𝑚 ∈ ℤ ↦ ((𝑢 / (2↑𝑚))[,)((𝑢 + 1) / (2↑𝑚)))) |
| 20 | ovex 6678 | . . 3 ⊢ ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ V | |
| 21 | 4, 8, 19, 20 | ovmpt2 6796 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| 22 | 21 | ancoms 469 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ran crn 5115 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 1c1 9937 + caddc 9939 / cdiv 10684 2c2 11070 ℤcz 11377 (,)cioo 12175 [,)cico 12177 ↑cexp 12860 topGenctg 16098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: dya2iocress 30336 dya2iocbrsiga 30337 dya2icoseg 30339 |
| Copyright terms: Public domain | W3C validator |