Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem3 Structured version   Visualization version   GIF version

Theorem sxbrsigalem3 30334
Description: The sigma-algebra generated by the closed half-spaces of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed sets of (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Hypothesis
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
sxbrsigalem3 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Distinct variable group:   𝑒,𝑓
Allowed substitution hints:   𝐽(𝑒,𝑓)

Proof of Theorem sxbrsigalem3
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsigalem0 30333 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
2 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
3 retop 22565 . . . . . 6 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2697 . . . . 5 𝐽 ∈ Top
54, 4txtopi 21393 . . . 4 (𝐽 ×t 𝐽) ∈ Top
6 uniretop 22566 . . . . . 6 ℝ = (topGen‘ran (,))
72unieqi 4445 . . . . . 6 𝐽 = (topGen‘ran (,))
86, 7eqtr4i 2647 . . . . 5 ℝ = 𝐽
94, 4, 8, 8txunii 21396 . . . 4 (ℝ × ℝ) = (𝐽 ×t 𝐽)
105, 9unicls 29949 . . 3 (Clsd‘(𝐽 ×t 𝐽)) = (ℝ × ℝ)
111, 10eqtr4i 2647 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽))
12 ovex 6678 . . . . . . 7 (𝑒[,)+∞) ∈ V
13 reex 10027 . . . . . . 7 ℝ ∈ V
1412, 13xpex 6962 . . . . . 6 ((𝑒[,)+∞) × ℝ) ∈ V
15 eqid 2622 . . . . . 6 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
1614, 15fnmpti 6022 . . . . 5 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ
17 oveq1 6657 . . . . . . . . 9 (𝑒 = 𝑢 → (𝑒[,)+∞) = (𝑢[,)+∞))
1817xpeq1d 5138 . . . . . . . 8 (𝑒 = 𝑢 → ((𝑒[,)+∞) × ℝ) = ((𝑢[,)+∞) × ℝ))
19 ovex 6678 . . . . . . . . 9 (𝑢[,)+∞) ∈ V
2019, 13xpex 6962 . . . . . . . 8 ((𝑢[,)+∞) × ℝ) ∈ V
2118, 15, 20fvmpt 6282 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) = ((𝑢[,)+∞) × ℝ))
22 icopnfcld 22571 . . . . . . . . 9 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
232fveq2i 6194 . . . . . . . . 9 (Clsd‘𝐽) = (Clsd‘(topGen‘ran (,)))
2422, 23syl6eleqr 2712 . . . . . . . 8 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘𝐽))
25 dif0 3950 . . . . . . . . 9 (ℝ ∖ ∅) = ℝ
26 0opn 20709 . . . . . . . . . . 11 (𝐽 ∈ Top → ∅ ∈ 𝐽)
274, 26ax-mp 5 . . . . . . . . . 10 ∅ ∈ 𝐽
288opncld 20837 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ∅ ∈ 𝐽) → (ℝ ∖ ∅) ∈ (Clsd‘𝐽))
294, 27, 28mp2an 708 . . . . . . . . 9 (ℝ ∖ ∅) ∈ (Clsd‘𝐽)
3025, 29eqeltrri 2698 . . . . . . . 8 ℝ ∈ (Clsd‘𝐽)
31 txcld 21406 . . . . . . . 8 (((𝑢[,)+∞) ∈ (Clsd‘𝐽) ∧ ℝ ∈ (Clsd‘𝐽)) → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3224, 30, 31sylancl 694 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3321, 32eqeltrd 2701 . . . . . 6 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3433rgen 2922 . . . . 5 𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))
35 fnfvrnss 6390 . . . . 5 (((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ ∧ ∀𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
3616, 34, 35mp2an 708 . . . 4 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽))
37 ovex 6678 . . . . . . 7 (𝑓[,)+∞) ∈ V
3813, 37xpex 6962 . . . . . 6 (ℝ × (𝑓[,)+∞)) ∈ V
39 eqid 2622 . . . . . 6 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
4038, 39fnmpti 6022 . . . . 5 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ
41 oveq1 6657 . . . . . . . . 9 (𝑓 = 𝑣 → (𝑓[,)+∞) = (𝑣[,)+∞))
4241xpeq2d 5139 . . . . . . . 8 (𝑓 = 𝑣 → (ℝ × (𝑓[,)+∞)) = (ℝ × (𝑣[,)+∞)))
43 ovex 6678 . . . . . . . . 9 (𝑣[,)+∞) ∈ V
4413, 43xpex 6962 . . . . . . . 8 (ℝ × (𝑣[,)+∞)) ∈ V
4542, 39, 44fvmpt 6282 . . . . . . 7 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) = (ℝ × (𝑣[,)+∞)))
46 icopnfcld 22571 . . . . . . . . 9 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
4746, 23syl6eleqr 2712 . . . . . . . 8 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘𝐽))
48 txcld 21406 . . . . . . . 8 ((ℝ ∈ (Clsd‘𝐽) ∧ (𝑣[,)+∞) ∈ (Clsd‘𝐽)) → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
4930, 47, 48sylancr 695 . . . . . . 7 (𝑣 ∈ ℝ → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5045, 49eqeltrd 2701 . . . . . 6 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5150rgen 2922 . . . . 5 𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))
52 fnfvrnss 6390 . . . . 5 (((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ ∧ ∀𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
5340, 51, 52mp2an 708 . . . 4 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
5436, 53unssi 3788 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
55 fvex 6201 . . . 4 (Clsd‘(𝐽 ×t 𝐽)) ∈ V
56 sssigagen 30208 . . . 4 ((Clsd‘(𝐽 ×t 𝐽)) ∈ V → (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
5755, 56ax-mp 5 . . 3 (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
5854, 57sstri 3612 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
59 sigagenss2 30213 . 2 (( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽)) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ∧ (Clsd‘(𝐽 ×t 𝐽)) ∈ V) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
6011, 58, 55, 59mp3an 1424 1 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  cun 3572  wss 3574  c0 3915   cuni 4436  cmpt 4729   × cxp 5112  ran crn 5115   Fn wfn 5883  cfv 5888  (class class class)co 6650  cr 9935  +∞cpnf 10071  (,)cioo 12175  [,)cico 12177  topGenctg 16098  Topctop 20698  Clsdccld 20820   ×t ctx 21363  sigaGencsigagen 30201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-ico 12181  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-tx 21365  df-siga 30171  df-sigagen 30202
This theorem is referenced by:  sxbrsigalem4  30349
  Copyright terms: Public domain W3C validator