![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eigvalfval | Structured version Visualization version GIF version |
Description: The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigvalfval | ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6201 | . . 3 ⊢ (eigvec‘𝑇) ∈ V | |
2 | 1 | mptex 6486 | . 2 ⊢ (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) ∈ V |
3 | ax-hilex 27856 | . 2 ⊢ ℋ ∈ V | |
4 | fveq2 6191 | . . 3 ⊢ (𝑡 = 𝑇 → (eigvec‘𝑡) = (eigvec‘𝑇)) | |
5 | fveq1 6190 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
6 | 5 | oveq1d 6665 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) ·ih 𝑥) = ((𝑇‘𝑥) ·ih 𝑥)) |
7 | 6 | oveq1d 6665 | . . 3 ⊢ (𝑡 = 𝑇 → (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)) = (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) |
8 | 4, 7 | mpteq12dv 4733 | . 2 ⊢ (𝑡 = 𝑇 → (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
9 | df-eigval 28713 | . 2 ⊢ eigval = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | |
10 | 2, 3, 3, 8, 9 | fvmptmap 7894 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 / cdiv 10684 2c2 11070 ↑cexp 12860 ℋchil 27776 ·ih csp 27779 normℎcno 27780 eigveccei 27816 eigvalcel 27817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-hilex 27856 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-eigval 28713 |
This theorem is referenced by: eigvalval 28819 |
Copyright terms: Public domain | W3C validator |