MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xptp0 Structured version   Visualization version   GIF version

Theorem el2xptp0 7212
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2xptp0 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) ↔ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩))

Proof of Theorem el2xptp0
StepHypRef Expression
1 xp1st 7198 . . . . . 6 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (1st𝐴) ∈ (𝑈 × 𝑉))
21ad2antrl 764 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (1st𝐴) ∈ (𝑈 × 𝑉))
3 3simpa 1058 . . . . . . 7 (((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
43adantl 482 . . . . . 6 ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
54adantl 482 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
6 eqopi 7202 . . . . 5 (((1st𝐴) ∈ (𝑈 × 𝑉) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌)) → (1st𝐴) = ⟨𝑋, 𝑌⟩)
72, 5, 6syl2anc 693 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (1st𝐴) = ⟨𝑋, 𝑌⟩)
8 simprr3 1111 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (2nd𝐴) = 𝑍)
97, 8jca 554 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍))
10 df-ot 4186 . . . . . 6 𝑋, 𝑌, 𝑍⟩ = ⟨⟨𝑋, 𝑌⟩, 𝑍
1110eqeq2i 2634 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ 𝐴 = ⟨⟨𝑋, 𝑌⟩, 𝑍⟩)
12 eqop 7208 . . . . 5 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (𝐴 = ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
1311, 12syl5bb 272 . . . 4 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
1413ad2antrl 764 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
159, 14mpbird 247 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩)
16 opelxpi 5148 . . . . . . . 8 ((𝑋𝑈𝑌𝑉) → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉))
17163adant3 1081 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉))
18 simp3 1063 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑍𝑊)
19 opelxp 5146 . . . . . . 7 (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊) ↔ (⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉) ∧ 𝑍𝑊))
2017, 18, 19sylanbrc 698 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
2110, 20syl5eqel 2705 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
2221adantr 481 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
23 eleq1 2689 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ↔ ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊)))
2423adantl 482 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ↔ ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊)))
2522, 24mpbird 247 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → 𝐴 ∈ ((𝑈 × 𝑉) × 𝑊))
26 fveq2 6191 . . . . . 6 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (1st𝐴) = (1st ‘⟨𝑋, 𝑌, 𝑍⟩))
2726fveq2d 6195 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (1st ‘(1st𝐴)) = (1st ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)))
28 ot1stg 7182 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (1st ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)) = 𝑋)
2927, 28sylan9eqr 2678 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (1st ‘(1st𝐴)) = 𝑋)
3026fveq2d 6195 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (2nd ‘(1st𝐴)) = (2nd ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)))
31 ot2ndg 7183 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (2nd ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)) = 𝑌)
3230, 31sylan9eqr 2678 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (2nd ‘(1st𝐴)) = 𝑌)
33 fveq2 6191 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (2nd𝐴) = (2nd ‘⟨𝑋, 𝑌, 𝑍⟩))
34 ot3rdg 7184 . . . . . 6 (𝑍𝑊 → (2nd ‘⟨𝑋, 𝑌, 𝑍⟩) = 𝑍)
35343ad2ant3 1084 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (2nd ‘⟨𝑋, 𝑌, 𝑍⟩) = 𝑍)
3633, 35sylan9eqr 2678 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (2nd𝐴) = 𝑍)
3729, 32, 363jca 1242 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))
3825, 37jca 554 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)))
3915, 38impbida 877 1 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) ↔ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cop 4183  cotp 4185   × cxp 5112  cfv 5888  1st c1st 7166  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator