MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xptp0 Structured version   Visualization version   Unicode version

Theorem el2xptp0 7212
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2xptp0  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( ( A  e.  ( ( U  X.  V )  X.  W
)  /\  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y  /\  ( 2nd `  A )  =  Z ) )  <->  A  =  <. X ,  Y ,  Z >. ) )

Proof of Theorem el2xptp0
StepHypRef Expression
1 xp1st 7198 . . . . . 6  |-  ( A  e.  ( ( U  X.  V )  X.  W )  ->  ( 1st `  A )  e.  ( U  X.  V
) )
21ad2antrl 764 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  ( ( U  X.  V )  X.  W
)  /\  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y  /\  ( 2nd `  A )  =  Z ) ) )  ->  ( 1st `  A
)  e.  ( U  X.  V ) )
3 3simpa 1058 . . . . . . 7  |-  ( ( ( 1st `  ( 1st `  A ) )  =  X  /\  ( 2nd `  ( 1st `  A
) )  =  Y  /\  ( 2nd `  A
)  =  Z )  ->  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y ) )
43adantl 482 . . . . . 6  |-  ( ( A  e.  ( ( U  X.  V )  X.  W )  /\  ( ( 1st `  ( 1st `  A ) )  =  X  /\  ( 2nd `  ( 1st `  A
) )  =  Y  /\  ( 2nd `  A
)  =  Z ) )  ->  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y ) )
54adantl 482 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  ( ( U  X.  V )  X.  W
)  /\  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y  /\  ( 2nd `  A )  =  Z ) ) )  ->  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y ) )
6 eqopi 7202 . . . . 5  |-  ( ( ( 1st `  A
)  e.  ( U  X.  V )  /\  ( ( 1st `  ( 1st `  A ) )  =  X  /\  ( 2nd `  ( 1st `  A
) )  =  Y ) )  ->  ( 1st `  A )  = 
<. X ,  Y >. )
72, 5, 6syl2anc 693 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  ( ( U  X.  V )  X.  W
)  /\  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y  /\  ( 2nd `  A )  =  Z ) ) )  ->  ( 1st `  A
)  =  <. X ,  Y >. )
8 simprr3 1111 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  ( ( U  X.  V )  X.  W
)  /\  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y  /\  ( 2nd `  A )  =  Z ) ) )  ->  ( 2nd `  A
)  =  Z )
97, 8jca 554 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  ( ( U  X.  V )  X.  W
)  /\  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y  /\  ( 2nd `  A )  =  Z ) ) )  ->  ( ( 1st `  A )  =  <. X ,  Y >.  /\  ( 2nd `  A )  =  Z ) )
10 df-ot 4186 . . . . . 6  |-  <. X ,  Y ,  Z >.  = 
<. <. X ,  Y >. ,  Z >.
1110eqeq2i 2634 . . . . 5  |-  ( A  =  <. X ,  Y ,  Z >.  <->  A  =  <. <. X ,  Y >. ,  Z >. )
12 eqop 7208 . . . . 5  |-  ( A  e.  ( ( U  X.  V )  X.  W )  ->  ( A  =  <. <. X ,  Y >. ,  Z >.  <->  (
( 1st `  A
)  =  <. X ,  Y >.  /\  ( 2nd `  A )  =  Z ) ) )
1311, 12syl5bb 272 . . . 4  |-  ( A  e.  ( ( U  X.  V )  X.  W )  ->  ( A  =  <. X ,  Y ,  Z >.  <->  (
( 1st `  A
)  =  <. X ,  Y >.  /\  ( 2nd `  A )  =  Z ) ) )
1413ad2antrl 764 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  ( ( U  X.  V )  X.  W
)  /\  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y  /\  ( 2nd `  A )  =  Z ) ) )  ->  ( A  = 
<. X ,  Y ,  Z >. 
<->  ( ( 1st `  A
)  =  <. X ,  Y >.  /\  ( 2nd `  A )  =  Z ) ) )
159, 14mpbird 247 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  ( ( U  X.  V )  X.  W
)  /\  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y  /\  ( 2nd `  A )  =  Z ) ) )  ->  A  =  <. X ,  Y ,  Z >. )
16 opelxpi 5148 . . . . . . . 8  |-  ( ( X  e.  U  /\  Y  e.  V )  -> 
<. X ,  Y >.  e.  ( U  X.  V
) )
17163adant3 1081 . . . . . . 7  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  -> 
<. X ,  Y >.  e.  ( U  X.  V
) )
18 simp3 1063 . . . . . . 7  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  Z  e.  W )
19 opelxp 5146 . . . . . . 7  |-  ( <. <. X ,  Y >. ,  Z >.  e.  (
( U  X.  V
)  X.  W )  <-> 
( <. X ,  Y >.  e.  ( U  X.  V )  /\  Z  e.  W ) )
2017, 18, 19sylanbrc 698 . . . . . 6  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  -> 
<. <. X ,  Y >. ,  Z >.  e.  ( ( U  X.  V
)  X.  W ) )
2110, 20syl5eqel 2705 . . . . 5  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  -> 
<. X ,  Y ,  Z >.  e.  ( ( U  X.  V )  X.  W ) )
2221adantr 481 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  A  =  <. X ,  Y ,  Z >. )  ->  <. X ,  Y ,  Z >.  e.  ( ( U  X.  V )  X.  W
) )
23 eleq1 2689 . . . . 5  |-  ( A  =  <. X ,  Y ,  Z >.  ->  ( A  e.  ( ( U  X.  V )  X.  W )  <->  <. X ,  Y ,  Z >.  e.  ( ( U  X.  V )  X.  W
) ) )
2423adantl 482 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  A  =  <. X ,  Y ,  Z >. )  ->  ( A  e.  ( ( U  X.  V )  X.  W )  <->  <. X ,  Y ,  Z >.  e.  ( ( U  X.  V )  X.  W
) ) )
2522, 24mpbird 247 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  A  =  <. X ,  Y ,  Z >. )  ->  A  e.  ( ( U  X.  V )  X.  W
) )
26 fveq2 6191 . . . . . 6  |-  ( A  =  <. X ,  Y ,  Z >.  ->  ( 1st `  A )  =  ( 1st `  <. X ,  Y ,  Z >. ) )
2726fveq2d 6195 . . . . 5  |-  ( A  =  <. X ,  Y ,  Z >.  ->  ( 1st `  ( 1st `  A
) )  =  ( 1st `  ( 1st `  <. X ,  Y ,  Z >. ) ) )
28 ot1stg 7182 . . . . 5  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( 1st `  ( 1st `  <. X ,  Y ,  Z >. ) )  =  X )
2927, 28sylan9eqr 2678 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  A  =  <. X ,  Y ,  Z >. )  ->  ( 1st `  ( 1st `  A
) )  =  X )
3026fveq2d 6195 . . . . 5  |-  ( A  =  <. X ,  Y ,  Z >.  ->  ( 2nd `  ( 1st `  A
) )  =  ( 2nd `  ( 1st `  <. X ,  Y ,  Z >. ) ) )
31 ot2ndg 7183 . . . . 5  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( 2nd `  ( 1st `  <. X ,  Y ,  Z >. ) )  =  Y )
3230, 31sylan9eqr 2678 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  A  =  <. X ,  Y ,  Z >. )  ->  ( 2nd `  ( 1st `  A
) )  =  Y )
33 fveq2 6191 . . . . 5  |-  ( A  =  <. X ,  Y ,  Z >.  ->  ( 2nd `  A )  =  ( 2nd `  <. X ,  Y ,  Z >. ) )
34 ot3rdg 7184 . . . . . 6  |-  ( Z  e.  W  ->  ( 2nd `  <. X ,  Y ,  Z >. )  =  Z )
35343ad2ant3 1084 . . . . 5  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( 2nd `  <. X ,  Y ,  Z >. )  =  Z )
3633, 35sylan9eqr 2678 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  A  =  <. X ,  Y ,  Z >. )  ->  ( 2nd `  A )  =  Z )
3729, 32, 363jca 1242 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  A  =  <. X ,  Y ,  Z >. )  ->  (
( 1st `  ( 1st `  A ) )  =  X  /\  ( 2nd `  ( 1st `  A
) )  =  Y  /\  ( 2nd `  A
)  =  Z ) )
3825, 37jca 554 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  A  =  <. X ,  Y ,  Z >. )  ->  ( A  e.  ( ( U  X.  V )  X.  W )  /\  (
( 1st `  ( 1st `  A ) )  =  X  /\  ( 2nd `  ( 1st `  A
) )  =  Y  /\  ( 2nd `  A
)  =  Z ) ) )
3915, 38impbida 877 1  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( ( A  e.  ( ( U  X.  V )  X.  W
)  /\  ( ( 1st `  ( 1st `  A
) )  =  X  /\  ( 2nd `  ( 1st `  A ) )  =  Y  /\  ( 2nd `  A )  =  Z ) )  <->  A  =  <. X ,  Y ,  Z >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   <.cotp 4185    X. cxp 5112   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator