| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltpi | Structured version Visualization version GIF version | ||
| Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltpi | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltpg 4227 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 2 | 1 | ibi 256 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1036 = wceq 1483 ∈ wcel 1990 {ctp 4181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 df-tp 4182 |
| This theorem is referenced by: prm23lt5 15519 perfectlem2 24955 zabsle1 25021 sgnmulsgn 30611 sgnmulsgp 30612 kur14lem7 31194 fmtnofz04prm 41489 perfectALTVlem2 41631 |
| Copyright terms: Public domain | W3C validator |