MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpg Structured version   Visualization version   GIF version

Theorem eltpg 4227
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpg (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))

Proof of Theorem eltpg
StepHypRef Expression
1 elprg 4196 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
2 elsng 4191 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐷} ↔ 𝐴 = 𝐷))
31, 2orbi12d 746 . 2 (𝐴𝑉 → ((𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}) ↔ ((𝐴 = 𝐵𝐴 = 𝐶) ∨ 𝐴 = 𝐷)))
4 df-tp 4182 . . . 4 {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷})
54eleq2i 2693 . . 3 (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}))
6 elun 3753 . . 3 (𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}))
75, 6bitri 264 . 2 (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}))
8 df-3or 1038 . 2 ((𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷) ↔ ((𝐴 = 𝐵𝐴 = 𝐶) ∨ 𝐴 = 𝐷))
93, 7, 83bitr4g 303 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  w3o 1036   = wceq 1483  wcel 1990  cun 3572  {csn 4177  {cpr 4179  {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by:  eldiftp  4228  eltpi  4229  eltp  4230  tpid3g  4305  f1dom3fv3dif  6525  f1dom3el3dif  6526  lcmftp  15349  estrreslem2  16778  1cubr  24569  zabsle1  25021  nb3grprlem1  26282  tpid2g  39316  tpid1g  39322
  Copyright terms: Public domain W3C validator