MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elee Structured version   Visualization version   GIF version

Theorem elee 25774
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
elee (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))

Proof of Theorem elee
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21oveq2d 6666 . . . 4 (𝑛 = 𝑁 → (ℝ ↑𝑚 (1...𝑛)) = (ℝ ↑𝑚 (1...𝑁)))
3 df-ee 25771 . . . 4 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑𝑚 (1...𝑛)))
4 ovex 6678 . . . 4 (ℝ ↑𝑚 (1...𝑁)) ∈ V
52, 3, 4fvmpt 6282 . . 3 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑𝑚 (1...𝑁)))
65eleq2d 2687 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (ℝ ↑𝑚 (1...𝑁))))
7 reex 10027 . . 3 ℝ ∈ V
8 ovex 6678 . . 3 (1...𝑁) ∈ V
97, 8elmap 7886 . 2 (𝐴 ∈ (ℝ ↑𝑚 (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶ℝ)
106, 9syl6bb 276 1 (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cr 9935  1c1 9937  cn 11020  ...cfz 12326  𝔼cee 25768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ee 25771
This theorem is referenced by:  mptelee  25775  eleei  25777  axlowdimlem5  25826  axlowdimlem7  25828  axlowdimlem10  25831  axlowdimlem14  25835  axlowdim1  25839
  Copyright terms: Public domain W3C validator