![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elee | Structured version Visualization version GIF version |
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elee | ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6658 | . . . . 5 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | 1 | oveq2d 6666 | . . . 4 ⊢ (𝑛 = 𝑁 → (ℝ ↑𝑚 (1...𝑛)) = (ℝ ↑𝑚 (1...𝑁))) |
3 | df-ee 25771 | . . . 4 ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑𝑚 (1...𝑛))) | |
4 | ovex 6678 | . . . 4 ⊢ (ℝ ↑𝑚 (1...𝑁)) ∈ V | |
5 | 2, 3, 4 | fvmpt 6282 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑𝑚 (1...𝑁))) |
6 | 5 | eleq2d 2687 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (ℝ ↑𝑚 (1...𝑁)))) |
7 | reex 10027 | . . 3 ⊢ ℝ ∈ V | |
8 | ovex 6678 | . . 3 ⊢ (1...𝑁) ∈ V | |
9 | 7, 8 | elmap 7886 | . 2 ⊢ (𝐴 ∈ (ℝ ↑𝑚 (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶ℝ) |
10 | 6, 9 | syl6bb 276 | 1 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 ℝcr 9935 1c1 9937 ℕcn 11020 ...cfz 12326 𝔼cee 25768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-ee 25771 |
This theorem is referenced by: mptelee 25775 eleei 25777 axlowdimlem5 25826 axlowdimlem7 25828 axlowdimlem10 25831 axlowdimlem14 25835 axlowdim1 25839 |
Copyright terms: Public domain | W3C validator |