MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1 Structured version   Visualization version   GIF version

Theorem elfz1 12331
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
elfz1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fzval 12328 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)})
21eleq2d 2687 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)}))
3 breq2 4657 . . . . 5 (𝑗 = 𝐾 → (𝑀𝑗𝑀𝐾))
4 breq1 4656 . . . . 5 (𝑗 = 𝐾 → (𝑗𝑁𝐾𝑁))
53, 4anbi12d 747 . . . 4 (𝑗 = 𝐾 → ((𝑀𝑗𝑗𝑁) ↔ (𝑀𝐾𝐾𝑁)))
65elrab 3363 . . 3 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
7 3anass 1042 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
86, 7bitr4i 267 . 2 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁))
92, 8syl6bb 276 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916   class class class wbr 4653  (class class class)co 6650  cle 10075  cz 11377  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-neg 10269  df-z 11378  df-fz 12327
This theorem is referenced by:  elfz  12332  elfz2  12333  fzen  12358  fzaddel  12375  fzadd2  12376  elfzm11  12411  fznn0  12432  phicl2  15473  nndiffz1  29548  fzmul  33537  fz1eqin  37332  jm2.27dlem2  37577  iblspltprt  40189  itgspltprt  40195
  Copyright terms: Public domain W3C validator