Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliind Structured version   Visualization version   GIF version

Theorem eliind 39240
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
eliind.a (𝜑𝐴 𝑥𝐵 𝐶)
eliind.k (𝜑𝐾𝐵)
eliind.d (𝑥 = 𝐾 → (𝐴𝐶𝐴𝐷))
Assertion
Ref Expression
eliind (𝜑𝐴𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐾
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem eliind
StepHypRef Expression
1 eliind.k . 2 (𝜑𝐾𝐵)
2 eliind.a . . 3 (𝜑𝐴 𝑥𝐵 𝐶)
3 eliin 4525 . . . 4 (𝐴 𝑥𝐵 𝐶 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
42, 3syl 17 . . 3 (𝜑 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
52, 4mpbid 222 . 2 (𝜑 → ∀𝑥𝐵 𝐴𝐶)
6 eliind.d . . 3 (𝑥 = 𝐾 → (𝐴𝐶𝐴𝐷))
76rspcva 3307 . 2 ((𝐾𝐵 ∧ ∀𝑥𝐵 𝐴𝐶) → 𝐴𝐷)
81, 5, 7syl2anc 693 1 (𝜑𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wral 2912   ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-iin 4523
This theorem is referenced by:  iooiinioc  39783  hspdifhsp  40830  smflimlem3  40981  smfsuplem1  41017  smflimsuplem4  41029
  Copyright terms: Public domain W3C validator