![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliind | Structured version Visualization version GIF version |
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
eliind.a | ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) |
eliind.k | ⊢ (𝜑 → 𝐾 ∈ 𝐵) |
eliind.d | ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) |
Ref | Expression |
---|---|
eliind | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliind.k | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐵) | |
2 | eliind.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) | |
3 | eliin 4525 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
5 | 2, 4 | mpbid 222 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
6 | eliind.d | . . 3 ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) | |
7 | 6 | rspcva 3307 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐷) |
8 | 1, 5, 7 | syl2anc 693 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∩ ciin 4521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-iin 4523 |
This theorem is referenced by: iooiinioc 39783 hspdifhsp 40830 smflimlem3 40981 smfsuplem1 41017 smflimsuplem4 41029 |
Copyright terms: Public domain | W3C validator |