Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem4 Structured version   Visualization version   GIF version

Theorem smflimsuplem4 41029
Description: If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem4.1 𝑛𝜑
smflimsuplem4.m (𝜑𝑀 ∈ ℤ)
smflimsuplem4.z 𝑍 = (ℤ𝑀)
smflimsuplem4.s (𝜑𝑆 ∈ SAlg)
smflimsuplem4.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem4.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem4.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem4.n (𝜑𝑁𝑍)
smflimsuplem4.i (𝜑𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
smflimsuplem4.c (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
Assertion
Ref Expression
smflimsuplem4 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
Distinct variable groups:   𝑛,𝐸,𝑥   𝑚,𝐹,𝑛,𝑥   𝑛,𝐻   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑍,𝑛   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑚)   𝐻(𝑥,𝑚)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑍(𝑥)

Proof of Theorem smflimsuplem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4 𝑚𝜑
2 smflimsuplem4.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 smflimsuplem4.z . . . . 5 𝑍 = (ℤ𝑀)
4 smflimsuplem4.n . . . . 5 (𝜑𝑁𝑍)
53, 4eluzelz2d 39640 . . . 4 (𝜑𝑁 ∈ ℤ)
6 eqid 2622 . . . 4 (ℤ𝑁) = (ℤ𝑁)
7 fvexd 6203 . . . 4 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
8 fvexd 6203 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ V)
91, 2, 5, 3, 6, 7, 8limsupequzmpt 39961 . . 3 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑥))))
10 smflimsuplem4.s . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
1110adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑆 ∈ SAlg)
123, 4uzssd2 39644 . . . . . . . . 9 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
1312sselda 3603 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
14 smflimsuplem4.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1514ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
1613, 15syldan 487 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
17 eqid 2622 . . . . . . 7 dom (𝐹𝑚) = dom (𝐹𝑚)
1811, 16, 17smff 40941 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
19 smflimsuplem4.e . . . . . . . 8 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
20 smflimsuplem4.h . . . . . . . 8 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
213, 19, 20, 13smflimsuplem1 41026 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → dom (𝐻𝑚) ⊆ dom (𝐹𝑚))
22 smflimsuplem4.i . . . . . . . . 9 (𝜑𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
2322adantr 481 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
24 simpr 477 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁))
25 fveq2 6191 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐻𝑛) = (𝐻𝑚))
2625dmeqd 5326 . . . . . . . . 9 (𝑛 = 𝑚 → dom (𝐻𝑛) = dom (𝐻𝑚))
2726eleq2d 2687 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥 ∈ dom (𝐻𝑛) ↔ 𝑥 ∈ dom (𝐻𝑚)))
2823, 24, 27eliind 39240 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 ∈ dom (𝐻𝑚))
2921, 28sseldd 3604 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 ∈ dom (𝐹𝑚))
3018, 29ffvelrnd 6360 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
3130rexrd 10089 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ ℝ*)
321, 5, 6, 31limsupvaluzmpt 39949 . . 3 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑥))) = inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
339, 32eqtrd 2656 . 2 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
34 smflimsuplem4.1 . . 3 𝑛𝜑
3512adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → (ℤ𝑁) ⊆ 𝑍)
36 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
3735, 36sseldd 3604 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
3820a1i 11 . . . . . . . . . . . . 13 (𝜑𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))))
39 fvex 6201 . . . . . . . . . . . . . . 15 (𝐸𝑛) ∈ V
4039mptex 6486 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
4140a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
4238, 41fvmpt2d 6293 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
4337, 42syldan 487 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
4443dmeqd 5326 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝐻𝑛) = dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
45 xrltso 11974 . . . . . . . . . . . . 13 < Or ℝ*
4645supex 8369 . . . . . . . . . . . 12 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V
47 eqid 2622 . . . . . . . . . . . 12 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
4846, 47dmmpti 6023 . . . . . . . . . . 11 dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛)
4948a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛))
5044, 49eqtrd 2656 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝐻𝑛) = (𝐸𝑛))
5134, 50iineq2d 4541 . . . . . . . 8 (𝜑 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛) = 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
5222, 51eleqtrd 2703 . . . . . . 7 (𝜑𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
5352adantr 481 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
54 eliinid 39294 . . . . . 6 ((𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ (𝐸𝑛))
5553, 36, 54syl2anc 693 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ (𝐸𝑛))
5646a1i 11 . . . . . 6 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑥 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V)
5743, 56fvmpt2d 6293 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑥 ∈ (𝐸𝑛)) → ((𝐻𝑛)‘𝑥) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
5855, 57mpdan 702 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
59 eqid 2622 . . . . . . . . . 10 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
603eluzelz2 39627 . . . . . . . . . . . . 13 (𝑛𝑍𝑛 ∈ ℤ)
61 eqid 2622 . . . . . . . . . . . . 13 (ℤ𝑛) = (ℤ𝑛)
6260, 61uzn0d 39652 . . . . . . . . . . . 12 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
63 fvex 6201 . . . . . . . . . . . . . . 15 (𝐹𝑚) ∈ V
6463dmex 7099 . . . . . . . . . . . . . 14 dom (𝐹𝑚) ∈ V
6564rgenw 2924 . . . . . . . . . . . . 13 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
6665a1i 11 . . . . . . . . . . . 12 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6762, 66iinexd 39318 . . . . . . . . . . 11 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6867adantl 482 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6959, 68rabexd 4814 . . . . . . . . 9 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
7037, 69syldan 487 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
7119fvmpt2 6291 . . . . . . . 8 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
7237, 70, 71syl2anc 693 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
7355, 72eleqtrd 2703 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
74 rabid 3116 . . . . . 6 (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
7573, 74sylib 208 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
7675simprd 479 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)
7758, 76eqeltrd 2701 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) ∈ ℝ)
7834, 58mpteq2da 4743 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) = (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
79 nfv 1843 . . . . 5 𝑘𝜑
80 fveq2 6191 . . . . . . . 8 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
8180mpteq1d 4738 . . . . . . 7 (𝑛 = 𝑘 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)))
8281rneqd 5353 . . . . . 6 (𝑛 = 𝑘 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)))
8382supeq1d 8352 . . . . 5 (𝑛 = 𝑘 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
84 nfv 1843 . . . . . . . 8 𝑚(𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1))
85 eluzelz 11697 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
8685adantr 481 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 ∈ ℤ)
87 simpr 477 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 = (𝑛 + 1))
8886peano2zd 11485 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (𝑛 + 1) ∈ ℤ)
8987, 88eqeltrd 2701 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ ℤ)
9086zred 11482 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 ∈ ℝ)
9189zred 11482 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ ℝ)
9290ltp1d 10954 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 < (𝑛 + 1))
9387eqcomd 2628 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (𝑛 + 1) = 𝑘)
9492, 93breqtrd 4679 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 < 𝑘)
9590, 91, 94ltled 10185 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛𝑘)
9661, 86, 89, 95eluzd 39635 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ (ℤ𝑛))
97 uzss 11708 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑛) → (ℤ𝑘) ⊆ (ℤ𝑛))
9896, 97syl 17 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (ℤ𝑘) ⊆ (ℤ𝑛))
99 fvexd 6203 . . . . . . . 8 (((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑚)‘𝑥) ∈ V)
10084, 98, 99rnmptss2 39472 . . . . . . 7 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
1011003adant1 1079 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
102 nfv 1843 . . . . . . . . 9 𝑚(𝜑𝑛 ∈ (ℤ𝑁))
103 eqid 2622 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))
104 simpll 790 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
10537, 104syldanl 735 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
1066uztrn2 11705 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
107106adantll 750 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
108105, 107, 30syl2anc 693 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
109102, 103, 108rnmptssd 39385 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ)
110 ressxr 10083 . . . . . . . . 9 ℝ ⊆ ℝ*
111110a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ℝ ⊆ ℝ*)
112109, 111sstrd 3613 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*)
1131123adant3 1081 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*)
114 supxrss 12162 . . . . . 6 ((ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ∧ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*) → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ≤ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
115101, 113, 114syl2anc 693 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ≤ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
116 smflimsuplem4.c . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
1173fvexi 6202 . . . . . . . . 9 𝑍 ∈ V
118117a1i 11 . . . . . . . 8 (𝜑𝑍 ∈ V)
119 fvexd 6203 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐻𝑛)‘𝑥) ∈ V)
120 fvexd 6203 . . . . . . . 8 (𝜑 → (ℤ𝑁) ∈ V)
12134, 36ssdf 39247 . . . . . . . 8 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑁))
122 fvexd 6203 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) ∈ V)
123 eqidd 2623 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) = ((𝐻𝑛)‘𝑥))
12434, 5, 6, 118, 12, 119, 120, 121, 122, 123climeldmeqmpt 39900 . . . . . . 7 (𝜑 → ((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ ↔ (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ ))
125116, 124mpbid 222 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
12678, 125eqeltrrd 2702 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ dom ⇝ )
12734, 79, 5, 6, 76, 83, 115, 126climinf2mpt 39946 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ⇝ inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
12878, 127eqbrtrd 4675 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ⇝ inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
12934, 5, 6, 77, 128climreclmpt 39916 . 2 (𝜑 → inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ) ∈ ℝ)
13033, 129eqeltrd 2701 1 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574   ciin 4521   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  infcinf 8347  cr 9935  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cz 11377  cuz 11687  lim supclsp 14201  cli 14215  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-smblfn 40910
This theorem is referenced by:  smflimsuplem7  41032
  Copyright terms: Public domain W3C validator