Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliind Structured version   Visualization version   Unicode version

Theorem eliind 39240
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
eliind.a  |-  ( ph  ->  A  e.  |^|_ x  e.  B  C )
eliind.k  |-  ( ph  ->  K  e.  B )
eliind.d  |-  ( x  =  K  ->  ( A  e.  C  <->  A  e.  D ) )
Assertion
Ref Expression
eliind  |-  ( ph  ->  A  e.  D )
Distinct variable groups:    x, A    x, B    x, D    x, K
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem eliind
StepHypRef Expression
1 eliind.k . 2  |-  ( ph  ->  K  e.  B )
2 eliind.a . . 3  |-  ( ph  ->  A  e.  |^|_ x  e.  B  C )
3 eliin 4525 . . . 4  |-  ( A  e.  |^|_ x  e.  B  C  ->  ( A  e. 
|^|_ x  e.  B  C 
<-> 
A. x  e.  B  A  e.  C )
)
42, 3syl 17 . . 3  |-  ( ph  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
52, 4mpbid 222 . 2  |-  ( ph  ->  A. x  e.  B  A  e.  C )
6 eliind.d . . 3  |-  ( x  =  K  ->  ( A  e.  C  <->  A  e.  D ) )
76rspcva 3307 . 2  |-  ( ( K  e.  B  /\  A. x  e.  B  A  e.  C )  ->  A  e.  D )
81, 5, 7syl2anc 693 1  |-  ( ph  ->  A  e.  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-iin 4523
This theorem is referenced by:  iooiinioc  39783  hspdifhsp  40830  smflimlem3  40981  smfsuplem1  41017  smflimsuplem4  41029
  Copyright terms: Public domain W3C validator