Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspdifhsp Structured version   Visualization version   GIF version

Theorem hspdifhsp 40830
Description: A n-dimensional half-open interval is the intersection of the difference of half spaces. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspdifhsp.x (𝜑𝑋 ∈ Fin)
hspdifhsp.n (𝜑𝑋 ≠ ∅)
hspdifhsp.a (𝜑𝐴:𝑋⟶ℝ)
hspdifhsp.b (𝜑𝐵:𝑋⟶ℝ)
hspdifhsp.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
Assertion
Ref Expression
hspdifhsp (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
Distinct variable groups:   𝐴,𝑖,𝑙,𝑥,𝑦   𝐵,𝑖,𝑙,𝑥,𝑦   𝑖,𝐻,𝑙,𝑥,𝑦   𝑖,𝑋,𝑙,𝑥,𝑦   𝜑,𝑖,𝑙,𝑥,𝑦

Proof of Theorem hspdifhsp
Dummy variables 𝑘 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . . . 8 𝑖𝜑
2 nfcv 2764 . . . . . . . . 9 𝑖𝑓
3 nfixp1 7928 . . . . . . . . 9 𝑖X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))
42, 3nfel 2777 . . . . . . . 8 𝑖 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))
51, 4nfan 1828 . . . . . . 7 𝑖(𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
6 ixpfn 7914 . . . . . . . . . . . . 13 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → 𝑓 Fn 𝑋)
76ad2antlr 763 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 Fn 𝑋)
8 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
98oveq2d 6666 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) = (-∞(,)(𝐵𝑖)))
10 iftrue 4092 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) = (-∞(,)(𝐵𝑖)))
119, 10eqtr4d 2659 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) = if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
12 eqimss 3657 . . . . . . . . . . . . . . . . 17 ((-∞(,)(𝐵𝑘)) = if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
1311, 12syl 17 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
14 ioossre 12235 . . . . . . . . . . . . . . . . 17 (-∞(,)(𝐵𝑘)) ⊆ ℝ
15 iffalse 4095 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) = ℝ)
1614, 15syl5sseqr 3654 . . . . . . . . . . . . . . . 16 𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
1713, 16pm2.61i 176 . . . . . . . . . . . . . . 15 (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)
18 mnfxr 10096 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
1918a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → -∞ ∈ ℝ*)
20 hspdifhsp.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵:𝑋⟶ℝ)
2120ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
2221rexrd 10089 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
2322adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
24 hspdifhsp.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴:𝑋⟶ℝ)
2524ffvelrnda 6359 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
26 icossre 12254 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
2725, 22, 26syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
2827adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
29 simpl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
30 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → 𝑘𝑋)
31 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐴𝑖) = (𝐴𝑘))
32 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐵𝑖) = (𝐵𝑘))
3331, 32oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑘 → ((𝐴𝑖)[,)(𝐵𝑖)) = ((𝐴𝑘)[,)(𝐵𝑘)))
3433fvixp 7913 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3529, 30, 34syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3635adantll 750 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3728, 36sseldd 3604 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
3837mnfltd 11958 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → -∞ < (𝑓𝑘))
3925rexrd 10089 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
4039adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
41 icoltub 39732 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ* ∧ (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘))) → (𝑓𝑘) < (𝐵𝑘))
4240, 23, 36, 41syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) < (𝐵𝑘))
4319, 23, 37, 38, 42eliood 39720 . . . . . . . . . . . . . . 15 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (-∞(,)(𝐵𝑘)))
4417, 43sseldi 3601 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
4544adantlr 751 . . . . . . . . . . . . 13 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
4645ralrimiva 2966 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
477, 46jca 554 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)))
48 vex 3203 . . . . . . . . . . . 12 𝑓 ∈ V
4948elixp 7915 . . . . . . . . . . 11 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)))
5047, 49sylibr 224 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
51 hspdifhsp.h . . . . . . . . . . . . 13 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
52 equequ1 1952 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘 → (𝑖 = 𝑙𝑘 = 𝑙))
5352ifbid 4108 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5453cbvixpv 7926 . . . . . . . . . . . . . . . 16 X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)
5554a1i 11 . . . . . . . . . . . . . . 15 ((𝑙𝑥𝑦 ∈ ℝ) → X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5655mpt2eq3ia 6720 . . . . . . . . . . . . . 14 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5756mpteq2i 4741 . . . . . . . . . . . . 13 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
5851, 57eqtri 2644 . . . . . . . . . . . 12 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
59 hspdifhsp.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
6059adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝑋 ∈ Fin)
61 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝑖𝑋)
6220adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → 𝐵:𝑋⟶ℝ)
6362, 61ffvelrnd 6360 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
6458, 60, 61, 63hspval 40823 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
6564adantlr 751 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
6650, 65eleqtrrd 2704 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
6718a1i 11 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → -∞ ∈ ℝ*)
6824adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐴:𝑋⟶ℝ)
6968, 61ffvelrnd 6360 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
7069rexrd 10089 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
7170adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝐴𝑖) ∈ ℝ*)
72 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
7358, 60, 61, 69hspval 40823 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐴𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7473adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑖(𝐻𝑋)(𝐴𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7572, 74eleqtrd 2703 . . . . . . . . . . . . 13 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7661adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑖𝑋)
77 iftrue 4092 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (-∞(,)(𝐴𝑖)))
7877fvixp 7913 . . . . . . . . . . . . 13 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
7975, 76, 78syl2anc 693 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
80 iooltub 39735 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ (𝐴𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8167, 71, 79, 80syl3anc 1326 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8281adantllr 755 . . . . . . . . . 10 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8370adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
8463rexrd 10089 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
8584adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
8648elixp 7915 . . . . . . . . . . . . . . . . 17 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
8786biimpi 206 . . . . . . . . . . . . . . . 16 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
8887simprd 479 . . . . . . . . . . . . . . 15 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
89 rspa 2930 . . . . . . . . . . . . . . 15 ((∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
9088, 89sylan 488 . . . . . . . . . . . . . 14 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
9190adantll 750 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
92 icogelb 12225 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))) → (𝐴𝑖) ≤ (𝑓𝑖))
9383, 85, 91, 92syl3anc 1326 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ (𝑓𝑖))
9469adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
95 icossre 12254 . . . . . . . . . . . . . . . 16 (((𝐴𝑖) ∈ ℝ ∧ (𝐵𝑖) ∈ ℝ*) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9669, 84, 95syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9796adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9897, 91sseldd 3604 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
9994, 98lenltd 10183 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ((𝐴𝑖) ≤ (𝑓𝑖) ↔ ¬ (𝑓𝑖) < (𝐴𝑖)))
10093, 99mpbid 222 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ¬ (𝑓𝑖) < (𝐴𝑖))
101100adantr 481 . . . . . . . . . 10 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → ¬ (𝑓𝑖) < (𝐴𝑖))
10282, 101pm2.65da 600 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
10366, 102eldifd 3585 . . . . . . . 8 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
104103ex 450 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → (𝑖𝑋𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
1055, 104ralrimi 2957 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
106 eliin 4525 . . . . . . 7 (𝑓 ∈ V → (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
10748, 106ax-mp 5 . . . . . 6 (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
108105, 107sylibr 224 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
109108ex 450 . . . 4 (𝜑 → (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
110 hspdifhsp.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
111 n0 3931 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑘 𝑘𝑋)
112111biimpi 206 . . . . . . . . . 10 (𝑋 ≠ ∅ → ∃𝑘 𝑘𝑋)
113110, 112syl 17 . . . . . . . . 9 (𝜑 → ∃𝑘 𝑘𝑋)
114113adantr 481 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → ∃𝑘 𝑘𝑋)
115 simpl 473 . . . . . . . . . . . . . . 15 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
116 simpr 477 . . . . . . . . . . . . . . 15 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑘𝑋)
117 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘𝑖 = 𝑘)
118117, 32oveq12d 6668 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖(𝐻𝑋)(𝐵𝑖)) = (𝑘(𝐻𝑋)(𝐵𝑘)))
119117, 31oveq12d 6668 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖(𝐻𝑋)(𝐴𝑖)) = (𝑘(𝐻𝑋)(𝐴𝑘)))
120118, 119difeq12d 3729 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) = ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘))))
121120eleq2d 2687 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ 𝑓 ∈ ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘)))))
122115, 116, 121eliind 39240 . . . . . . . . . . . . . 14 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 ∈ ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘))))
123122eldifad 3586 . . . . . . . . . . . . 13 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 ∈ (𝑘(𝐻𝑋)(𝐵𝑘)))
124123adantll 750 . . . . . . . . . . . 12 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓 ∈ (𝑘(𝐻𝑋)(𝐵𝑘)))
125 equequ1 1952 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝑖 = 𝑙 = 𝑙))
126125ifbid 4108 . . . . . . . . . . . . . . . . . 18 (𝑖 = → if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = if( = 𝑙, (-∞(,)𝑦), ℝ))
127126cbvixpv 7926 . . . . . . . . . . . . . . . . 17 X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)
128127a1i 11 . . . . . . . . . . . . . . . 16 ((𝑙𝑥𝑦 ∈ ℝ) → X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ))
129128mpt2eq3ia 6720 . . . . . . . . . . . . . . 15 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ))
130129mpteq2i 4741 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)))
13151, 130eqtri 2644 . . . . . . . . . . . . 13 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)))
13259ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑋 ∈ Fin)
133 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑘𝑋)
13421adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
135131, 132, 133, 134hspval 40823 . . . . . . . . . . . 12 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → (𝑘(𝐻𝑋)(𝐵𝑘)) = X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ))
136124, 135eleqtrd 2703 . . . . . . . . . . 11 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ))
137 ixpfn 7914 . . . . . . . . . . 11 (𝑓X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ) → 𝑓 Fn 𝑋)
138136, 137syl 17 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓 Fn 𝑋)
139138ex 450 . . . . . . . . 9 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑘𝑋𝑓 Fn 𝑋))
140139exlimdv 1861 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (∃𝑘 𝑘𝑋𝑓 Fn 𝑋))
141114, 140mpd 15 . . . . . . 7 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓 Fn 𝑋)
142 nfii1 4551 . . . . . . . . . 10 𝑖 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))
1432, 142nfel 2777 . . . . . . . . 9 𝑖 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))
1441, 143nfan 1828 . . . . . . . 8 𝑖(𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
145 simpll 790 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝜑)
146107biimpi 206 . . . . . . . . . . . . 13 (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
147146adantr 481 . . . . . . . . . . . 12 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
148 simpr 477 . . . . . . . . . . . 12 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑖𝑋)
149 rspa 2930 . . . . . . . . . . . 12 ((∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
150147, 148, 149syl2anc 693 . . . . . . . . . . 11 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
151150adantll 750 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
152 simpr 477 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑖𝑋)
15370adantlr 751 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
15484adantlr 751 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
155 simpll 790 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝜑)
156 eldifi 3732 . . . . . . . . . . . . . 14 (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
157156ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
158 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑖𝑋)
159 ioossre 12235 . . . . . . . . . . . . . 14 (-∞(,)(𝐵𝑖)) ⊆ ℝ
160 simplr 792 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
16164adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
162160, 161eleqtrd 2703 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
163 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑖𝑋)
16410fvixp 7913 . . . . . . . . . . . . . . 15 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖)))
165162, 163, 164syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖)))
166159, 165sseldi 3601 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
167155, 157, 158, 166syl21anc 1325 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
168167rexrd 10089 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ*)
169 simpl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝜑)
170156adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
171169, 170jca 554 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))))
172171ad2antrr 762 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))))
173 simplr 792 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑖𝑋)
174 simpr 477 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) < (𝐴𝑖))
175 ixpfn 7914 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) → 𝑓 Fn 𝑋)
176162, 175syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 Fn 𝑋)
177176adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 Fn 𝑋)
178 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝑓𝑘) = (𝑓𝑖))
179178adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑘) = (𝑓𝑖))
18018a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → -∞ ∈ ℝ*)
18170ad4ant13 1292 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝐴𝑖) ∈ ℝ*)
182166adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) ∈ ℝ)
183182mnfltd 11958 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → -∞ < (𝑓𝑖))
184 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) < (𝐴𝑖))
185180, 181, 182, 183, 184eliood 39720 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
186185adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
187179, 186eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ (-∞(,)(𝐴𝑖)))
188187adantlr 751 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ (-∞(,)(𝐴𝑖)))
18977eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (-∞(,)(𝐴𝑖)) = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
190189adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (-∞(,)(𝐴𝑖)) = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
191188, 190eleqtrd 2703 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
19210, 159syl6eqss 3655 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ)
193 ssid 3624 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℝ
19415, 193syl6eqss 3655 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ)
195192, 194pm2.61i 176 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ
196162adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
197 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → 𝑘𝑋)
198 fvixp2 39389 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
199196, 197, 198syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
200195, 199sseldi 3601 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
201200adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ ℝ)
202 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = ℝ)
203202eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22 𝑘 = 𝑖 → ℝ = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
204203adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → ℝ = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
205201, 204eleqtrd 2703 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
206205adantllr 755 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
207191, 206pm2.61dan 832 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
208207ralrimiva 2966 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
209177, 208jca 554 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ)))
21048elixp 7915 . . . . . . . . . . . . . . . 16 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ)))
211209, 210sylibr 224 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
21273eqcomd 2628 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (𝑖(𝐻𝑋)(𝐴𝑖)))
213212ad4ant13 1292 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (𝑖(𝐻𝑋)(𝐴𝑖)))
214211, 213eleqtrd 2703 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
215172, 173, 174, 214syl21anc 1325 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
216 eldifn 3733 . . . . . . . . . . . . . 14 (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
217216ad3antlr 767 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
218215, 217pm2.65da 600 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → ¬ (𝑓𝑖) < (𝐴𝑖))
219155, 158, 69syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
220219, 167lenltd 10183 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → ((𝐴𝑖) ≤ (𝑓𝑖) ↔ ¬ (𝑓𝑖) < (𝐴𝑖)))
221218, 220mpbird 247 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ (𝑓𝑖))
22218a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → -∞ ∈ ℝ*)
22384adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
224 iooltub 39735 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖))) → (𝑓𝑖) < (𝐵𝑖))
225222, 223, 165, 224syl3anc 1326 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) < (𝐵𝑖))
226155, 157, 158, 225syl21anc 1325 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) < (𝐵𝑖))
227153, 154, 168, 221, 226elicod 12224 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
228145, 151, 152, 227syl21anc 1325 . . . . . . . . 9 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
229228ex 450 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑖𝑋 → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
230144, 229ralrimi 2957 . . . . . . 7 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
231141, 230jca 554 . . . . . 6 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
232231, 86sylibr 224 . . . . 5 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
233232ex 450 . . . 4 (𝜑 → (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))))
234109, 233impbid 202 . . 3 (𝜑 → (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
235234alrimiv 1855 . 2 (𝜑 → ∀𝑓(𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
236 dfcleq 2616 . 2 (X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑓(𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
237235, 236sylibr 224 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  wss 3574  c0 3915  ifcif 4086   ciin 4521   class class class wbr 4653  cmpt 4729   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Xcixp 7908  Fincfn 7955  cr 9935  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  (,)cioo 12175  [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-ico 12181
This theorem is referenced by:  hoimbllem  40844
  Copyright terms: Public domain W3C validator