Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliinid Structured version   Visualization version   GIF version

Theorem eliinid 39294
Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
eliinid ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem eliinid
StepHypRef Expression
1 simpl 473 . . 3 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴 𝑥𝐵 𝐶)
2 eliin 4525 . . . 4 (𝐴 𝑥𝐵 𝐶 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
32adantr 481 . . 3 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
41, 3mpbid 222 . 2 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → ∀𝑥𝐵 𝐴𝐶)
5 rspa 2930 . 2 ((∀𝑥𝐵 𝐴𝐶𝑥𝐵) → 𝐴𝐶)
64, 5sylancom 701 1 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wral 2912   ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-iin 4523
This theorem is referenced by:  iinssiin  39312  fnlimfvre  39906  smflimlem2  40980  smflimmpt  41016  smfsuplem1  41017  smfsupmpt  41021  smfsupxr  41022  smfinflem  41023  smfinfmpt  41025  smflimsuplem4  41029  smflimsupmpt  41035  smfliminfmpt  41038
  Copyright terms: Public domain W3C validator