Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelima2 Structured version   Visualization version   GIF version

Theorem fvelima2 39475
Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
fvelima2 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem fvelima2
StepHypRef Expression
1 id 22 . . . 4 (𝐵 ∈ (𝐹𝐶) → 𝐵 ∈ (𝐹𝐶))
2 elimag 5470 . . . 4 (𝐵 ∈ (𝐹𝐶) → (𝐵 ∈ (𝐹𝐶) ↔ ∃𝑥𝐶 𝑥𝐹𝐵))
31, 2mpbid 222 . . 3 (𝐵 ∈ (𝐹𝐶) → ∃𝑥𝐶 𝑥𝐹𝐵)
4 df-rex 2918 . . 3 (∃𝑥𝐶 𝑥𝐹𝐵 ↔ ∃𝑥(𝑥𝐶𝑥𝐹𝐵))
53, 4sylib 208 . 2 (𝐵 ∈ (𝐹𝐶) → ∃𝑥(𝑥𝐶𝑥𝐹𝐵))
6 fnbr 5993 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐹𝐵) → 𝑥𝐴)
76adantrl 752 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥𝐴)
8 simprl 794 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥𝐶)
97, 8elind 3798 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → 𝑥 ∈ (𝐴𝐶))
10 fnfun 5988 . . . . . . . . 9 (𝐹 Fn 𝐴 → Fun 𝐹)
11 funbrfv 6234 . . . . . . . . . 10 (Fun 𝐹 → (𝑥𝐹𝐵 → (𝐹𝑥) = 𝐵))
1211imp 445 . . . . . . . . 9 ((Fun 𝐹𝑥𝐹𝐵) → (𝐹𝑥) = 𝐵)
1310, 12sylan 488 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝐵) → (𝐹𝑥) = 𝐵)
1413adantrl 752 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → (𝐹𝑥) = 𝐵)
159, 14jca 554 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐶𝑥𝐹𝐵)) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
1615ex 450 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐶𝑥𝐹𝐵) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵)))
1716eximdv 1846 . . . 4 (𝐹 Fn 𝐴 → (∃𝑥(𝑥𝐶𝑥𝐹𝐵) → ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵)))
1817imp 445 . . 3 ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥𝐶𝑥𝐹𝐵)) → ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
19 df-rex 2918 . . 3 (∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐶) ∧ (𝐹𝑥) = 𝐵))
2018, 19sylibr 224 . 2 ((𝐹 Fn 𝐴 ∧ ∃𝑥(𝑥𝐶𝑥𝐹𝐵)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
215, 20sylan2 491 1 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → ∃𝑥 ∈ (𝐴𝐶)(𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  cin 3573   class class class wbr 4653  cima 5117  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  limsupresxr  39998  liminfresxr  39999  liminfvalxr  40015
  Copyright terms: Public domain W3C validator