Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelimad Structured version   Visualization version   GIF version

Theorem fvelimad 39458
Description: Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvelimad.x 𝑥𝐹
fvelimad.f (𝜑𝐹 Fn 𝐴)
fvelimad.c (𝜑𝐶 ∈ (𝐹𝐵))
Assertion
Ref Expression
fvelimad (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem fvelimad
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelimad.c . . . 4 (𝜑𝐶 ∈ (𝐹𝐵))
2 elimag 5470 . . . . 5 (𝐶 ∈ (𝐹𝐵) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑦𝐹𝐶))
32ibi 256 . . . 4 (𝐶 ∈ (𝐹𝐵) → ∃𝑦𝐵 𝑦𝐹𝐶)
41, 3syl 17 . . 3 (𝜑 → ∃𝑦𝐵 𝑦𝐹𝐶)
5 nfv 1843 . . . 4 𝑦𝜑
6 nfre1 3005 . . . 4 𝑦𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶
7 vex 3203 . . . . . . . . . . 11 𝑦 ∈ V
87a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝑦 ∈ V)
91adantr 481 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝐶 ∈ (𝐹𝐵))
10 simpr 477 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝑦𝐹𝐶)
11 breldmg 5330 . . . . . . . . . 10 ((𝑦 ∈ V ∧ 𝐶 ∈ (𝐹𝐵) ∧ 𝑦𝐹𝐶) → 𝑦 ∈ dom 𝐹)
128, 9, 10, 11syl3anc 1326 . . . . . . . . 9 ((𝜑𝑦𝐹𝐶) → 𝑦 ∈ dom 𝐹)
13 fvelimad.f . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐴)
1413fndmd 39441 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
1514adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐹𝐶) → dom 𝐹 = 𝐴)
1612, 15eleqtrd 2703 . . . . . . . 8 ((𝜑𝑦𝐹𝐶) → 𝑦𝐴)
17163adant2 1080 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐴)
18 simp2 1062 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐵)
1917, 18elind 3798 . . . . . 6 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦 ∈ (𝐴𝐵))
20 fnfun 5988 . . . . . . . . 9 (𝐹 Fn 𝐴 → Fun 𝐹)
2113, 20syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
22213ad2ant1 1082 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → Fun 𝐹)
23 simp3 1063 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐹𝐶)
24 funbrfv 6234 . . . . . . 7 (Fun 𝐹 → (𝑦𝐹𝐶 → (𝐹𝑦) = 𝐶))
2522, 23, 24sylc 65 . . . . . 6 ((𝜑𝑦𝐵𝑦𝐹𝐶) → (𝐹𝑦) = 𝐶)
26 rspe 3003 . . . . . 6 ((𝑦 ∈ (𝐴𝐵) ∧ (𝐹𝑦) = 𝐶) → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
2719, 25, 26syl2anc 693 . . . . 5 ((𝜑𝑦𝐵𝑦𝐹𝐶) → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
28273exp 1264 . . . 4 (𝜑 → (𝑦𝐵 → (𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)))
295, 6, 28rexlimd 3026 . . 3 (𝜑 → (∃𝑦𝐵 𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶))
304, 29mpd 15 . 2 (𝜑 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
31 nfv 1843 . . 3 𝑦(𝐹𝑥) = 𝐶
32 fvelimad.x . . . . 5 𝑥𝐹
33 nfcv 2764 . . . . 5 𝑥𝑦
3432, 33nffv 6198 . . . 4 𝑥(𝐹𝑦)
35 nfcv 2764 . . . 4 𝑥𝐶
3634, 35nfeq 2776 . . 3 𝑥(𝐹𝑦) = 𝐶
37 fveq2 6191 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
3837eqeq1d 2624 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝑦) = 𝐶))
3931, 36, 38cbvrex 3168 . 2 (∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶 ↔ ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
4030, 39sylibr 224 1 (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wnfc 2751  wrex 2913  Vcvv 3200  cin 3573   class class class wbr 4653  dom cdm 5114  cima 5117  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  limsupmnflem  39952  liminfvalxr  40015
  Copyright terms: Public domain W3C validator