MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo12r Structured version   Visualization version   GIF version

Theorem elo12r 14259
Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo12r (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀

Proof of Theorem elo12r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 331 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
32ralbidv 2986 . . . . 5 (𝑦 = 𝐶 → (∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
4 breq2 4657 . . . . . . 7 (𝑚 = 𝑀 → ((abs‘(𝐹𝑥)) ≤ 𝑚 ↔ (abs‘(𝐹𝑥)) ≤ 𝑀))
54imbi2d 330 . . . . . 6 (𝑚 = 𝑀 → ((𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
65ralbidv 2986 . . . . 5 (𝑚 = 𝑀 → (∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
73, 6rspc2ev 3324 . . . 4 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
873expa 1265 . . 3 (((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
983adant1 1079 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
10 elo12 14258 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
11103ad2ant1 1082 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
129, 11mpbird 247 1 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  wf 5884  cfv 5888  cc 9934  cr 9935  cle 10075  abscabs 13974  𝑂(1)co1 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181  df-o1 14221
This theorem is referenced by:  o1resb  14297  o1of2  14343  o1cxp  24701
  Copyright terms: Public domain W3C validator