Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpotr Structured version   Visualization version   GIF version

Theorem elpotr 31686
Description: A class of transitive sets is partially ordered by E. (Contributed by Scott Fenton, 15-Oct-2010.)
Assertion
Ref Expression
elpotr (∀𝑧𝐴 Tr 𝑧 → E Po 𝐴)
Distinct variable group:   𝑧,𝐴

Proof of Theorem elpotr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alral 2928 . . . . . 6 (∀𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
21alimi 1739 . . . . 5 (∀𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
3 alral 2928 . . . . 5 (∀𝑥𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
42, 3syl 17 . . . 4 (∀𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
54ralimi 2952 . . 3 (∀𝑧𝐴𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑧𝐴𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
6 ralcom 3098 . . . 4 (∀𝑧𝐴𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑧𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
7 ralcom 3098 . . . . 5 (∀𝑧𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
87ralbii 2980 . . . 4 (∀𝑥𝐴𝑧𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
96, 8bitri 264 . . 3 (∀𝑧𝐴𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
105, 9sylib 208 . 2 (∀𝑧𝐴𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
11 dftr2 4754 . . 3 (Tr 𝑧 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1211ralbii 2980 . 2 (∀𝑧𝐴 Tr 𝑧 ↔ ∀𝑧𝐴𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
13 df-po 5035 . . 3 ( E Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
14 epel 5032 . . . . . . . 8 (𝑥 E 𝑦𝑥𝑦)
15 epel 5032 . . . . . . . 8 (𝑦 E 𝑧𝑦𝑧)
1614, 15anbi12i 733 . . . . . . 7 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
17 epel 5032 . . . . . . 7 (𝑥 E 𝑧𝑥𝑧)
1816, 17imbi12i 340 . . . . . 6 (((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
19 elirrv 8504 . . . . . . . 8 ¬ 𝑥𝑥
20 epel 5032 . . . . . . . 8 (𝑥 E 𝑥𝑥𝑥)
2119, 20mtbir 313 . . . . . . 7 ¬ 𝑥 E 𝑥
2221biantrur 527 . . . . . 6 (((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧) ↔ (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
2318, 22bitr3i 266 . . . . 5 (((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
2423ralbii 2980 . . . 4 (∀𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑧𝐴𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
25242ralbii 2981 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
2613, 25bitr4i 267 . 2 ( E Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
2710, 12, 263imtr4i 281 1 (∀𝑧𝐴 Tr 𝑧 → E Po 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1481  wral 2912   class class class wbr 4653  Tr wtr 4752   E cep 5028   Po wpo 5033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator