MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr2 Structured version   Visualization version   GIF version

Theorem elptr2 21377
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
elptr2.1 (𝜑𝐴𝑉)
elptr2.2 (𝜑𝑊 ∈ Fin)
elptr2.3 ((𝜑𝑘𝐴) → 𝑆 ∈ (𝐹𝑘))
elptr2.4 ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝑆 = (𝐹𝑘))
Assertion
Ref Expression
elptr2 (𝜑X𝑘𝐴 𝑆𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝑔,𝑦   𝜑,𝑘   𝑔,𝑘,𝑧,𝐴,𝑥,𝑦   𝑔,𝐹,𝑘,𝑥,𝑦,𝑧   𝑆,𝑔,𝑥   𝑔,𝑉,𝑘,𝑥,𝑦,𝑧   𝑘,𝑊,𝑦   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑔)   𝐵(𝑥,𝑦,𝑧,𝑔)   𝑆(𝑧,𝑘)   𝑊(𝑥,𝑧,𝑔)

Proof of Theorem elptr2
StepHypRef Expression
1 nffvmpt1 6199 . . . 4 𝑘((𝑘𝐴𝑆)‘𝑦)
2 nfcv 2764 . . . 4 𝑦((𝑘𝐴𝑆)‘𝑘)
3 fveq2 6191 . . . 4 (𝑦 = 𝑘 → ((𝑘𝐴𝑆)‘𝑦) = ((𝑘𝐴𝑆)‘𝑘))
41, 2, 3cbvixp 7925 . . 3 X𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) = X𝑘𝐴 ((𝑘𝐴𝑆)‘𝑘)
5 simpr 477 . . . . 5 ((𝜑𝑘𝐴) → 𝑘𝐴)
6 elptr2.3 . . . . 5 ((𝜑𝑘𝐴) → 𝑆 ∈ (𝐹𝑘))
7 eqid 2622 . . . . . 6 (𝑘𝐴𝑆) = (𝑘𝐴𝑆)
87fvmpt2 6291 . . . . 5 ((𝑘𝐴𝑆 ∈ (𝐹𝑘)) → ((𝑘𝐴𝑆)‘𝑘) = 𝑆)
95, 6, 8syl2anc 693 . . . 4 ((𝜑𝑘𝐴) → ((𝑘𝐴𝑆)‘𝑘) = 𝑆)
109ixpeq2dva 7923 . . 3 (𝜑X𝑘𝐴 ((𝑘𝐴𝑆)‘𝑘) = X𝑘𝐴 𝑆)
114, 10syl5eq 2668 . 2 (𝜑X𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) = X𝑘𝐴 𝑆)
12 elptr2.1 . . 3 (𝜑𝐴𝑉)
136ralrimiva 2966 . . . 4 (𝜑 → ∀𝑘𝐴 𝑆 ∈ (𝐹𝑘))
147fnmpt 6020 . . . 4 (∀𝑘𝐴 𝑆 ∈ (𝐹𝑘) → (𝑘𝐴𝑆) Fn 𝐴)
1513, 14syl 17 . . 3 (𝜑 → (𝑘𝐴𝑆) Fn 𝐴)
169, 6eqeltrd 2701 . . . . 5 ((𝜑𝑘𝐴) → ((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘))
1716ralrimiva 2966 . . . 4 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘))
181nfel1 2779 . . . . 5 𝑘((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦)
19 nfv 1843 . . . . 5 𝑦((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘)
20 fveq2 6191 . . . . . 6 (𝑦 = 𝑘 → (𝐹𝑦) = (𝐹𝑘))
213, 20eleq12d 2695 . . . . 5 (𝑦 = 𝑘 → (((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦) ↔ ((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘)))
2218, 19, 21cbvral 3167 . . . 4 (∀𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦) ↔ ∀𝑘𝐴 ((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘))
2317, 22sylibr 224 . . 3 (𝜑 → ∀𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦))
24 elptr2.2 . . 3 (𝜑𝑊 ∈ Fin)
25 eldifi 3732 . . . . . . 7 (𝑘 ∈ (𝐴𝑊) → 𝑘𝐴)
2625, 9sylan2 491 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝑊)) → ((𝑘𝐴𝑆)‘𝑘) = 𝑆)
27 elptr2.4 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝑆 = (𝐹𝑘))
2826, 27eqtrd 2656 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → ((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘))
2928ralrimiva 2966 . . . 4 (𝜑 → ∀𝑘 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘))
301nfeq1 2778 . . . . 5 𝑘((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦)
31 nfv 1843 . . . . 5 𝑦((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘)
3220unieqd 4446 . . . . . 6 (𝑦 = 𝑘 (𝐹𝑦) = (𝐹𝑘))
333, 32eqeq12d 2637 . . . . 5 (𝑦 = 𝑘 → (((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦) ↔ ((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘)))
3430, 31, 33cbvral 3167 . . . 4 (∀𝑦 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦) ↔ ∀𝑘 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘))
3529, 34sylibr 224 . . 3 (𝜑 → ∀𝑦 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦))
36 ptbas.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
3736elptr 21376 . . 3 ((𝐴𝑉 ∧ ((𝑘𝐴𝑆) Fn 𝐴 ∧ ∀𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦))) → X𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ 𝐵)
3812, 15, 23, 24, 35, 37syl122anc 1335 . 2 (𝜑X𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ 𝐵)
3911, 38eqeltrrd 2702 1 (𝜑X𝑘𝐴 𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  wrex 2913  cdif 3571   cuni 4436  cmpt 4729   Fn wfn 5883  cfv 5888  Xcixp 7908  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ixp 7909
This theorem is referenced by:  ptbasid  21378  ptbasin  21380  ptpjpre2  21383  ptopn  21386
  Copyright terms: Public domain W3C validator