| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elptr2 | Structured version Visualization version Unicode version | ||
| Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| ptbas.1 |
|
| elptr2.1 |
|
| elptr2.2 |
|
| elptr2.3 |
|
| elptr2.4 |
|
| Ref | Expression |
|---|---|
| elptr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nffvmpt1 6199 |
. . . 4
| |
| 2 | nfcv 2764 |
. . . 4
| |
| 3 | fveq2 6191 |
. . . 4
| |
| 4 | 1, 2, 3 | cbvixp 7925 |
. . 3
|
| 5 | simpr 477 |
. . . . 5
| |
| 6 | elptr2.3 |
. . . . 5
| |
| 7 | eqid 2622 |
. . . . . 6
| |
| 8 | 7 | fvmpt2 6291 |
. . . . 5
|
| 9 | 5, 6, 8 | syl2anc 693 |
. . . 4
|
| 10 | 9 | ixpeq2dva 7923 |
. . 3
|
| 11 | 4, 10 | syl5eq 2668 |
. 2
|
| 12 | elptr2.1 |
. . 3
| |
| 13 | 6 | ralrimiva 2966 |
. . . 4
|
| 14 | 7 | fnmpt 6020 |
. . . 4
|
| 15 | 13, 14 | syl 17 |
. . 3
|
| 16 | 9, 6 | eqeltrd 2701 |
. . . . 5
|
| 17 | 16 | ralrimiva 2966 |
. . . 4
|
| 18 | 1 | nfel1 2779 |
. . . . 5
|
| 19 | nfv 1843 |
. . . . 5
| |
| 20 | fveq2 6191 |
. . . . . 6
| |
| 21 | 3, 20 | eleq12d 2695 |
. . . . 5
|
| 22 | 18, 19, 21 | cbvral 3167 |
. . . 4
|
| 23 | 17, 22 | sylibr 224 |
. . 3
|
| 24 | elptr2.2 |
. . 3
| |
| 25 | eldifi 3732 |
. . . . . . 7
| |
| 26 | 25, 9 | sylan2 491 |
. . . . . 6
|
| 27 | elptr2.4 |
. . . . . 6
| |
| 28 | 26, 27 | eqtrd 2656 |
. . . . 5
|
| 29 | 28 | ralrimiva 2966 |
. . . 4
|
| 30 | 1 | nfeq1 2778 |
. . . . 5
|
| 31 | nfv 1843 |
. . . . 5
| |
| 32 | 20 | unieqd 4446 |
. . . . . 6
|
| 33 | 3, 32 | eqeq12d 2637 |
. . . . 5
|
| 34 | 30, 31, 33 | cbvral 3167 |
. . . 4
|
| 35 | 29, 34 | sylibr 224 |
. . 3
|
| 36 | ptbas.1 |
. . . 4
| |
| 37 | 36 | elptr 21376 |
. . 3
|
| 38 | 12, 15, 23, 24, 35, 37 | syl122anc 1335 |
. 2
|
| 39 | 11, 38 | eqeltrrd 2702 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ixp 7909 |
| This theorem is referenced by: ptbasid 21378 ptbasin 21380 ptpjpre2 21383 ptopn 21386 |
| Copyright terms: Public domain | W3C validator |