![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwdifsn | Structured version Visualization version GIF version |
Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
elpwdifsn | ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → 𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1062 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → 𝑆 ⊆ 𝑉) | |
2 | 1 | sselda 3603 | . . . . 5 ⊢ (((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑉) |
3 | df-nel 2898 | . . . . . . . . . 10 ⊢ (𝐴 ∉ 𝑆 ↔ ¬ 𝐴 ∈ 𝑆) | |
4 | 3 | biimpi 206 | . . . . . . . . 9 ⊢ (𝐴 ∉ 𝑆 → ¬ 𝐴 ∈ 𝑆) |
5 | 4 | 3ad2ant3 1084 | . . . . . . . 8 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → ¬ 𝐴 ∈ 𝑆) |
6 | 5 | anim1i 592 | . . . . . . 7 ⊢ (((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) ∧ 𝑥 ∈ 𝑆) → (¬ 𝐴 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆)) |
7 | 6 | ancomd 467 | . . . . . 6 ⊢ (((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆)) |
8 | nelne2 2891 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆) → 𝑥 ≠ 𝐴) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑥 ≠ 𝐴) |
10 | eldifsn 4317 | . . . . 5 ⊢ (𝑥 ∈ (𝑉 ∖ {𝐴}) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 𝐴)) | |
11 | 2, 9, 10 | sylanbrc 698 | . . . 4 ⊢ (((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (𝑉 ∖ {𝐴})) |
12 | 11 | ex 450 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → (𝑥 ∈ 𝑆 → 𝑥 ∈ (𝑉 ∖ {𝐴}))) |
13 | 12 | ssrdv 3609 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → 𝑆 ⊆ (𝑉 ∖ {𝐴})) |
14 | elpwg 4166 | . . 3 ⊢ (𝑆 ∈ 𝑊 → (𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}) ↔ 𝑆 ⊆ (𝑉 ∖ {𝐴}))) | |
15 | 14 | 3ad2ant1 1082 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → (𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴}) ↔ 𝑆 ⊆ (𝑉 ∖ {𝐴}))) |
16 | 13, 15 | mpbird 247 | 1 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆) → 𝑆 ∈ 𝒫 (𝑉 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ≠ wne 2794 ∉ wnel 2897 ∖ cdif 3571 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-pw 4160 df-sn 4178 |
This theorem is referenced by: uhgrspan1 26195 upgrreslem 26196 umgrreslem 26197 umgrres1lem 26202 upgrres1 26205 |
Copyright terms: Public domain | W3C validator |