| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwdifsn | Structured version Visualization version Unicode version | ||
| Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| elpwdifsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1062 |
. . . . . 6
| |
| 2 | 1 | sselda 3603 |
. . . . 5
|
| 3 | df-nel 2898 |
. . . . . . . . . 10
| |
| 4 | 3 | biimpi 206 |
. . . . . . . . 9
|
| 5 | 4 | 3ad2ant3 1084 |
. . . . . . . 8
|
| 6 | 5 | anim1i 592 |
. . . . . . 7
|
| 7 | 6 | ancomd 467 |
. . . . . 6
|
| 8 | nelne2 2891 |
. . . . . 6
| |
| 9 | 7, 8 | syl 17 |
. . . . 5
|
| 10 | eldifsn 4317 |
. . . . 5
| |
| 11 | 2, 9, 10 | sylanbrc 698 |
. . . 4
|
| 12 | 11 | ex 450 |
. . 3
|
| 13 | 12 | ssrdv 3609 |
. 2
|
| 14 | elpwg 4166 |
. . 3
| |
| 15 | 14 | 3ad2ant1 1082 |
. 2
|
| 16 | 13, 15 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-pw 4160 df-sn 4178 |
| This theorem is referenced by: uhgrspan1 26195 upgrreslem 26196 umgrreslem 26197 umgrres1lem 26202 upgrres1 26205 |
| Copyright terms: Public domain | W3C validator |