MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnrexdm Structured version   Visualization version   GIF version

Theorem elrnrexdm 6363
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
elrnrexdm (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem elrnrexdm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . . . . . 6 (𝑌 ∈ ran 𝐹𝑌 = 𝑌)
21ancli 574 . . . . 5 (𝑌 ∈ ran 𝐹 → (𝑌 ∈ ran 𝐹𝑌 = 𝑌))
32adantl 482 . . . 4 ((Fun 𝐹𝑌 ∈ ran 𝐹) → (𝑌 ∈ ran 𝐹𝑌 = 𝑌))
4 eqeq2 2633 . . . . 5 (𝑦 = 𝑌 → (𝑌 = 𝑦𝑌 = 𝑌))
54rspcev 3309 . . . 4 ((𝑌 ∈ ran 𝐹𝑌 = 𝑌) → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦)
63, 5syl 17 . . 3 ((Fun 𝐹𝑌 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦)
76ex 450 . 2 (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦))
8 funfn 5918 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
9 eqeq2 2633 . . . 4 (𝑦 = (𝐹𝑥) → (𝑌 = 𝑦𝑌 = (𝐹𝑥)))
109rexrn 6361 . . 3 (𝐹 Fn dom 𝐹 → (∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
118, 10sylbi 207 . 2 (Fun 𝐹 → (∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
127, 11sylibd 229 1 (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  toprntopon  20729  wlkiswwlksupgr2  26763  bj-ccinftydisj  33100  gneispace  38432
  Copyright terms: Public domain W3C validator