MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmftp Structured version   Visualization version   GIF version

Theorem lcmftp 15349
Description: The least common multiple of a triple of integers is the least common multiple of the third integer and the the least common multiple of the first two integers. Although there would be a shorter proof using lcmfunsn 15357, this explicit proof (not based on induction) should be kept. (Proof modification is discouraged.) (Contributed by AV, 23-Aug-2020.)
Assertion
Ref Expression
lcmftp ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))

Proof of Theorem lcmftp
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 11388 . . . . . . 7 0 ∈ ℤ
2 eltpg 4227 . . . . . . 7 (0 ∈ ℤ → (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
31, 2ax-mp 5 . . . . . 6 (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶))
43biimpri 218 . . . . 5 ((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → 0 ∈ {𝐴, 𝐵, 𝐶})
5 tpssi 4369 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {𝐴, 𝐵, 𝐶} ⊆ ℤ)
64, 5anim12ci 591 . . . 4 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶}))
7 lcmf0val 15335 . . . 4 (({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶}) → (lcm‘{𝐴, 𝐵, 𝐶}) = 0)
86, 7syl 17 . . 3 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = 0)
9 0zd 11389 . . . . . . . . . 10 (𝐶 ∈ ℤ → 0 ∈ ℤ)
10 lcmcom 15306 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 lcm 𝐶) = (𝐶 lcm 0))
119, 10mpancom 703 . . . . . . . . 9 (𝐶 ∈ ℤ → (0 lcm 𝐶) = (𝐶 lcm 0))
12 lcm0val 15307 . . . . . . . . 9 (𝐶 ∈ ℤ → (𝐶 lcm 0) = 0)
1311, 12eqtrd 2656 . . . . . . . 8 (𝐶 ∈ ℤ → (0 lcm 𝐶) = 0)
1413eqcomd 2628 . . . . . . 7 (𝐶 ∈ ℤ → 0 = (0 lcm 𝐶))
15143ad2ant3 1084 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0 lcm 𝐶))
1615adantl 482 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐶))
17 0zd 11389 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 0 ∈ ℤ)
18 lcmcom 15306 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 lcm 𝐵) = (𝐵 lcm 0))
1917, 18mpancom 703 . . . . . . . . . 10 (𝐵 ∈ ℤ → (0 lcm 𝐵) = (𝐵 lcm 0))
20 lcm0val 15307 . . . . . . . . . 10 (𝐵 ∈ ℤ → (𝐵 lcm 0) = 0)
2119, 20eqtrd 2656 . . . . . . . . 9 (𝐵 ∈ ℤ → (0 lcm 𝐵) = 0)
2221eqcomd 2628 . . . . . . . 8 (𝐵 ∈ ℤ → 0 = (0 lcm 𝐵))
23223ad2ant2 1083 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0 lcm 𝐵))
2423adantl 482 . . . . . 6 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐵))
2524oveq1d 6665 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((0 lcm 𝐵) lcm 𝐶))
26 oveq1 6657 . . . . . . 7 (0 = 𝐴 → (0 lcm 𝐵) = (𝐴 lcm 𝐵))
2726oveq1d 6665 . . . . . 6 (0 = 𝐴 → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
2827adantr 481 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
2916, 25, 283eqtrd 2660 . . . 4 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
30 lcm0val 15307 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 lcm 0) = 0)
3130eqcomd 2628 . . . . . . . 8 (𝐴 ∈ ℤ → 0 = (𝐴 lcm 0))
32313ad2ant1 1082 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (𝐴 lcm 0))
3332adantl 482 . . . . . 6 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (𝐴 lcm 0))
3433oveq1d 6665 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((𝐴 lcm 0) lcm 𝐶))
35133ad2ant3 1084 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 lcm 𝐶) = 0)
3635adantl 482 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = 0)
37 oveq2 6658 . . . . . . 7 (0 = 𝐵 → (𝐴 lcm 0) = (𝐴 lcm 𝐵))
3837adantr 481 . . . . . 6 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 0) = (𝐴 lcm 𝐵))
3938oveq1d 6665 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 0) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
4034, 36, 393eqtr3d 2664 . . . 4 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
41 lcmcl 15314 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℕ0)
4241nn0zd 11480 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ)
43 lcm0val 15307 . . . . . . . 8 ((𝐴 lcm 𝐵) ∈ ℤ → ((𝐴 lcm 𝐵) lcm 0) = 0)
4443eqcomd 2628 . . . . . . 7 ((𝐴 lcm 𝐵) ∈ ℤ → 0 = ((𝐴 lcm 𝐵) lcm 0))
4542, 44syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 = ((𝐴 lcm 𝐵) lcm 0))
46453adant3 1081 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = ((𝐴 lcm 𝐵) lcm 0))
47 oveq2 6658 . . . . 5 (0 = 𝐶 → ((𝐴 lcm 𝐵) lcm 0) = ((𝐴 lcm 𝐵) lcm 𝐶))
4846, 47sylan9eqr 2678 . . . 4 ((0 = 𝐶 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
4929, 40, 483jaoian 1393 . . 3 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
508, 49eqtrd 2656 . 2 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
51423adant3 1081 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ)
52 simp3 1063 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
5351, 52jca 554 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
5453adantl 482 . . . . . . . 8 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
55 dvdslcm 15311 . . . . . . . 8 (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
5654, 55syl 17 . . . . . . 7 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
57 dvdslcm 15311 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)))
58573adant3 1081 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)))
59 simp1 1061 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
60 lcmcl 15314 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ0)
6153, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ0)
6261nn0zd 11480 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ)
6359, 51, 623jca 1242 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
64 dvdstr 15018 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
6665expd 452 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6766com12 32 . . . . . . . . . . . . . 14 (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6867adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6958, 68mpcom 38 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7069adantl 482 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7170com12 32 . . . . . . . . . 10 ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7271adantr 481 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7372impcom 446 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
74 simpr 477 . . . . . . . . . . . . . . 15 ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → 𝐵 ∥ (𝐴 lcm 𝐵))
7557, 74syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵))
76753adant3 1081 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵))
7776adantl 482 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ (𝐴 lcm 𝐵))
78 simp2 1062 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
7978, 51, 623jca 1242 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
8079adantl 482 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
81 dvdstr 15018 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8280, 81syl 17 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8377, 82mpand 711 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8483com12 32 . . . . . . . . . 10 ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8584adantr 481 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8685impcom 446 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
87 simpr 477 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
8887adantl 482 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
8973, 86, 883jca 1242 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
9056, 89mpdan 702 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
91 breq1 4656 . . . . . . . 8 (𝑚 = 𝐴 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
92 breq1 4656 . . . . . . . 8 (𝑚 = 𝐵 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
93 breq1 4656 . . . . . . . 8 (𝑚 = 𝐶 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
9491, 92, 93raltpg 4236 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
9594adantl 482 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
9690, 95mpbird 247 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
97 breq1 4656 . . . . . . . . 9 (𝑚 = 𝐴 → (𝑚𝑘𝐴𝑘))
98 breq1 4656 . . . . . . . . 9 (𝑚 = 𝐵 → (𝑚𝑘𝐵𝑘))
99 breq1 4656 . . . . . . . . 9 (𝑚 = 𝐶 → (𝑚𝑘𝐶𝑘))
10097, 98, 99raltpg 4236 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 ↔ (𝐴𝑘𝐵𝑘𝐶𝑘)))
101100ad2antlr 763 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 ↔ (𝐴𝑘𝐵𝑘𝐶𝑘)))
102 simpr 477 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
10351ad2antlr 763 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∈ ℤ)
10452ad2antlr 763 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℤ)
105102, 103, 1043jca 1242 . . . . . . . . . 10 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
106105adantr 481 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
107 3ioran 1056 . . . . . . . . . . . . . . . . 17 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ↔ (¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶))
108 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . 22 (0 = 𝐴𝐴 = 0)
109108notbii 310 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 = 𝐴 ↔ ¬ 𝐴 = 0)
110 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . 22 (0 = 𝐵𝐵 = 0)
111110notbii 310 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 = 𝐵 ↔ ¬ 𝐵 = 0)
112109, 111anbi12i 733 . . . . . . . . . . . . . . . . . . . 20 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
113112biimpi 206 . . . . . . . . . . . . . . . . . . 19 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
114 ioran 511 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 = 0 ∨ 𝐵 = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
115113, 114sylibr 224 . . . . . . . . . . . . . . . . . 18 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
1161153adant3 1081 . . . . . . . . . . . . . . . . 17 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
117107, 116sylbi 207 . . . . . . . . . . . . . . . 16 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
118 id 22 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
1191183adant3 1081 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
120117, 119anim12ci 591 . . . . . . . . . . . . . . 15 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
121 lcmn0cl 15310 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 lcm 𝐵) ∈ ℕ)
122120, 121syl 17 . . . . . . . . . . . . . 14 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ)
123 nnne0 11053 . . . . . . . . . . . . . . 15 ((𝐴 lcm 𝐵) ∈ ℕ → (𝐴 lcm 𝐵) ≠ 0)
124123neneqd 2799 . . . . . . . . . . . . . 14 ((𝐴 lcm 𝐵) ∈ ℕ → ¬ (𝐴 lcm 𝐵) = 0)
125122, 124syl 17 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0)
126 eqcom 2629 . . . . . . . . . . . . . . . . . 18 (0 = 𝐶𝐶 = 0)
127126notbii 310 . . . . . . . . . . . . . . . . 17 (¬ 0 = 𝐶 ↔ ¬ 𝐶 = 0)
128127biimpi 206 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐶 → ¬ 𝐶 = 0)
1291283ad2ant3 1084 . . . . . . . . . . . . . . 15 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ 𝐶 = 0)
130107, 129sylbi 207 . . . . . . . . . . . . . 14 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 𝐶 = 0)
131130adantr 481 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 𝐶 = 0)
132125, 131jca 554 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
133132adantr 481 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
134133adantr 481 . . . . . . . . . 10 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
135 ioran 511 . . . . . . . . . 10 (¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0) ↔ (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
136134, 135sylibr 224 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0))
137119adantl 482 . . . . . . . . . . . . . . 15 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
138 nnz 11399 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
139137, 138anim12ci 591 . . . . . . . . . . . . . 14 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
140 3anass 1042 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
141139, 140sylibr 224 . . . . . . . . . . . . 13 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
142 lcmdvds 15321 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝑘𝐵𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘))
143141, 142syl 17 . . . . . . . . . . . 12 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘𝐵𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘))
144143com12 32 . . . . . . . . . . 11 ((𝐴𝑘𝐵𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘))
1451443adant3 1081 . . . . . . . . . 10 ((𝐴𝑘𝐵𝑘𝐶𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘))
146145impcom 446 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (𝐴 lcm 𝐵) ∥ 𝑘)
147 simp3 1063 . . . . . . . . . 10 ((𝐴𝑘𝐵𝑘𝐶𝑘) → 𝐶𝑘)
148147adantl 482 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → 𝐶𝑘)
149 lcmledvds 15312 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → (((𝐴 lcm 𝐵) ∥ 𝑘𝐶𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
150149imp 445 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) ∧ ((𝐴 lcm 𝐵) ∥ 𝑘𝐶𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)
151106, 136, 146, 148, 150syl22anc 1327 . . . . . . . 8 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)
152151ex 450 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘𝐵𝑘𝐶𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
153101, 152sylbid 230 . . . . . 6 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
154153ralrimiva 2966 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
15596, 154jca 554 . . . 4 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)))
156109biimpi 206 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐴 → ¬ 𝐴 = 0)
157111biimpi 206 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐵 → ¬ 𝐵 = 0)
158156, 157anim12i 590 . . . . . . . . . . . . . . 15 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
159158, 114sylibr 224 . . . . . . . . . . . . . 14 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
1601593adant3 1081 . . . . . . . . . . . . 13 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
161107, 160sylbi 207 . . . . . . . . . . . 12 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
162161, 119anim12ci 591 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
163162, 121syl 17 . . . . . . . . . 10 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ)
164163, 124syl 17 . . . . . . . . 9 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0)
165164, 131jca 554 . . . . . . . 8 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
166165, 135sylibr 224 . . . . . . 7 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0))
16754, 166jca 554 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)))
168 lcmn0cl 15310 . . . . . 6 ((((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ)
169167, 168syl 17 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ)
1705adantl 482 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ⊆ ℤ)
171 tpfi 8236 . . . . . 6 {𝐴, 𝐵, 𝐶} ∈ Fin
172171a1i 11 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ∈ Fin)
1733a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
174173biimpd 219 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ {𝐴, 𝐵, 𝐶} → (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
175174con3d 148 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 0 ∈ {𝐴, 𝐵, 𝐶}))
176175impcom 446 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 0 ∈ {𝐴, 𝐵, 𝐶})
177 df-nel 2898 . . . . . 6 (0 ∉ {𝐴, 𝐵, 𝐶} ↔ ¬ 0 ∈ {𝐴, 𝐵, 𝐶})
178176, 177sylibr 224 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 ∉ {𝐴, 𝐵, 𝐶})
179 lcmf 15346 . . . . 5 ((((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ ∧ ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ {𝐴, 𝐵, 𝐶} ∈ Fin ∧ 0 ∉ {𝐴, 𝐵, 𝐶})) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))))
180169, 170, 172, 178, 179syl13anc 1328 . . . 4 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))))
181155, 180mpbird 247 . . 3 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}))
182181eqcomd 2628 . 2 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
18350, 182pm2.61ian 831 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wnel 2897  wral 2912  wss 3574  {ctp 4181   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  cle 10075  cn 11020  0cn0 11292  cz 11377  cdvds 14983   lcm clcm 15301  lcmclcmf 15302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217  df-lcm 15303  df-lcmf 15304
This theorem is referenced by:  lcmf2a3a4e12  15360
  Copyright terms: Public domain W3C validator