MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prm23lt5 Structured version   Visualization version   GIF version

Theorem prm23lt5 15519
Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
prm23lt5 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))

Proof of Theorem prm23lt5
StepHypRef Expression
1 prmnn 15388 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 11351 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32adantr 481 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ ℕ0)
4 4nn0 11311 . . . 4 4 ∈ ℕ0
54a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 4 ∈ ℕ0)
6 df-5 11082 . . . . . 6 5 = (4 + 1)
76breq2i 4661 . . . . 5 (𝑃 < 5 ↔ 𝑃 < (4 + 1))
8 prmz 15389 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
9 4z 11411 . . . . . . 7 4 ∈ ℤ
10 zleltp1 11428 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
118, 9, 10sylancl 694 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1)))
1211biimprd 238 . . . . 5 (𝑃 ∈ ℙ → (𝑃 < (4 + 1) → 𝑃 ≤ 4))
137, 12syl5bi 232 . . . 4 (𝑃 ∈ ℙ → (𝑃 < 5 → 𝑃 ≤ 4))
1413imp 445 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ≤ 4)
15 elfz2nn0 12431 . . 3 (𝑃 ∈ (0...4) ↔ (𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ0𝑃 ≤ 4))
163, 5, 14, 15syl3anbrc 1246 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈ (0...4))
17 fz0to4untppr 12442 . . . 4 (0...4) = ({0, 1, 2} ∪ {3, 4})
1817eleq2i 2693 . . 3 (𝑃 ∈ (0...4) ↔ 𝑃 ∈ ({0, 1, 2} ∪ {3, 4}))
19 elun 3753 . . . . . 6 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) ↔ (𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}))
20 eltpi 4229 . . . . . . . 8 (𝑃 ∈ {0, 1, 2} → (𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2))
21 nnne0 11053 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ≠ 0)
22 eqneqall 2805 . . . . . . . . . . . 12 (𝑃 = 0 → (𝑃 ≠ 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2322com12 32 . . . . . . . . . . 11 (𝑃 ≠ 0 → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
241, 21, 233syl 18 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3)))
2524com12 32 . . . . . . . . 9 (𝑃 = 0 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
26 eleq1 2689 . . . . . . . . . 10 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
27 1nprm 15392 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
2827pm2.21i 116 . . . . . . . . . 10 (1 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
2926, 28syl6bi 243 . . . . . . . . 9 (𝑃 = 1 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
30 orc 400 . . . . . . . . . 10 (𝑃 = 2 → (𝑃 = 2 ∨ 𝑃 = 3))
3130a1d 25 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3225, 29, 313jaoi 1391 . . . . . . . 8 ((𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
3320, 32syl 17 . . . . . . 7 (𝑃 ∈ {0, 1, 2} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
34 elpri 4197 . . . . . . . 8 (𝑃 ∈ {3, 4} → (𝑃 = 3 ∨ 𝑃 = 4))
35 olc 399 . . . . . . . . . 10 (𝑃 = 3 → (𝑃 = 2 ∨ 𝑃 = 3))
3635a1d 25 . . . . . . . . 9 (𝑃 = 3 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
37 eleq1 2689 . . . . . . . . . 10 (𝑃 = 4 → (𝑃 ∈ ℙ ↔ 4 ∈ ℙ))
38 4nprm 15407 . . . . . . . . . . 11 ¬ 4 ∈ ℙ
3938pm2.21i 116 . . . . . . . . . 10 (4 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))
4037, 39syl6bi 243 . . . . . . . . 9 (𝑃 = 4 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4136, 40jaoi 394 . . . . . . . 8 ((𝑃 = 3 ∨ 𝑃 = 4) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4234, 41syl 17 . . . . . . 7 (𝑃 ∈ {3, 4} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4333, 42jaoi 394 . . . . . 6 ((𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4419, 43sylbi 207 . . . . 5 (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3)))
4544com12 32 . . . 4 (𝑃 ∈ ℙ → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4645adantr 481 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4}) → (𝑃 = 2 ∨ 𝑃 = 3)))
4718, 46syl5bi 232 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ (0...4) → (𝑃 = 2 ∨ 𝑃 = 3)))
4816, 47mpd 15 1 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3o 1036   = wceq 1483  wcel 1990  wne 2794  cun 3572  {cpr 4179  {ctp 4181   class class class wbr 4653  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  0cn0 11292  cz 11377  ...cfz 12326  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  prm23ge5  15520
  Copyright terms: Public domain W3C validator