MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 11365
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 11364 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2693 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 3753 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 10093 . . . 4 +∞ ∈ V
54elsn2 4211 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 541 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 286 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383   = wceq 1483  wcel 1990  cun 3572  {csn 4177  +∞cpnf 10071  0cn0 11292  0*cxnn0 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-pow 4843  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-pnf 10076  df-xr 10078  df-xnn0 11364
This theorem is referenced by:  xnn0xr  11368  pnf0xnn0  11370  xnn0nemnf  11374  xnn0nnn0pnf  11376  xnn0n0n1ge2b  11965  xnn0ge0  11967  xnn0lenn0nn0  12075  xnn0xadd0  12077  xnn0xrge0  12325  tayl0  24116
  Copyright terms: Public domain W3C validator