MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xadd0 Structured version   Visualization version   GIF version

Theorem xnn0xadd0 12077
Description: The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0. (Contributed by AV, 14-Dec-2020.)
Assertion
Ref Expression
xnn0xadd0 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))

Proof of Theorem xnn0xadd0
StepHypRef Expression
1 elxnn0 11365 . . . 4 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 elxnn0 11365 . . . . . . 7 (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0𝐵 = +∞))
3 nn0re 11301 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 nn0re 11301 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
5 rexadd 12063 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
63, 4, 5syl2an 494 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
76eqeq1d 2624 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 + 𝐵) = 0))
8 nn0ge0 11318 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
93, 8jca 554 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
10 nn0ge0 11318 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
114, 10jca 554 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
12 add20 10540 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
139, 11, 12syl2an 494 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
147, 13bitrd 268 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
1514biimpd 219 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
1615expcom 451 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
17 oveq2 6658 . . . . . . . . . . . . 13 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
1817eqeq1d 2624 . . . . . . . . . . . 12 (𝐵 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 +𝑒 +∞) = 0))
1918adantr 481 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 +𝑒 +∞) = 0))
20 nn0xnn0 11367 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)
21 xnn0xrnemnf 11375 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
22 xaddpnf1 12057 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2320, 21, 223syl 18 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 +𝑒 +∞) = +∞)
2423adantl 482 . . . . . . . . . . . 12 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → (𝐴 +𝑒 +∞) = +∞)
2524eqeq1d 2624 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 +∞) = 0 ↔ +∞ = 0))
2619, 25bitrd 268 . . . . . . . . . 10 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ +∞ = 0))
27 0re 10040 . . . . . . . . . . . . 13 0 ∈ ℝ
28 renepnf 10087 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ +∞)
2927, 28ax-mp 5 . . . . . . . . . . . 12 0 ≠ +∞
3029nesymi 2851 . . . . . . . . . . 11 ¬ +∞ = 0
3130pm2.21i 116 . . . . . . . . . 10 (+∞ = 0 → (𝐴 = 0 ∧ 𝐵 = 0))
3226, 31syl6bi 243 . . . . . . . . 9 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
3332ex 450 . . . . . . . 8 (𝐵 = +∞ → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
3416, 33jaoi 394 . . . . . . 7 ((𝐵 ∈ ℕ0𝐵 = +∞) → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
352, 34sylbi 207 . . . . . 6 (𝐵 ∈ ℕ0* → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
3635com12 32 . . . . 5 (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
37 oveq1 6657 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
3837eqeq1d 2624 . . . . . . . 8 (𝐴 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (+∞ +𝑒 𝐵) = 0))
39 xnn0xrnemnf 11375 . . . . . . . . . 10 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
40 xaddpnf2 12058 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
4139, 40syl 17 . . . . . . . . 9 (𝐵 ∈ ℕ0* → (+∞ +𝑒 𝐵) = +∞)
4241eqeq1d 2624 . . . . . . . 8 (𝐵 ∈ ℕ0* → ((+∞ +𝑒 𝐵) = 0 ↔ +∞ = 0))
4338, 42sylan9bb 736 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ +∞ = 0))
4443, 31syl6bi 243 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
4544ex 450 . . . . 5 (𝐴 = +∞ → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
4636, 45jaoi 394 . . . 4 ((𝐴 ∈ ℕ0𝐴 = +∞) → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
471, 46sylbi 207 . . 3 (𝐴 ∈ ℕ0* → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
4847imp 445 . 2 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
49 oveq12 6659 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = (0 +𝑒 0))
50 0xr 10086 . . . 4 0 ∈ ℝ*
51 xaddid1 12072 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
5250, 51ax-mp 5 . . 3 (0 +𝑒 0) = 0
5349, 52syl6eq 2672 . 2 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = 0)
5448, 53impbid1 215 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936   + caddc 9939  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073  cle 10075  0cn0 11292  0*cxnn0 11363   +𝑒 cxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-xadd 11947
This theorem is referenced by:  vtxd0nedgb  26384
  Copyright terms: Public domain W3C validator