![]() |
Metamath
Proof Explorer Theorem List (p. 114 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nn0re 11301 | A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | ||
Theorem | nn0cn 11302 | A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) | ||
Theorem | nn0rei 11303 | A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 ∈ ℝ | ||
Theorem | nn0cni 11304 | A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 ∈ ℂ | ||
Theorem | dfn2 11305 | The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
⊢ ℕ = (ℕ0 ∖ {0}) | ||
Theorem | elnnne0 11306 | The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | ||
Theorem | 0nn0 11307 | 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 0 ∈ ℕ0 | ||
Theorem | 1nn0 11308 | 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 1 ∈ ℕ0 | ||
Theorem | 2nn0 11309 | 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 2 ∈ ℕ0 | ||
Theorem | 3nn0 11310 | 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 3 ∈ ℕ0 | ||
Theorem | 4nn0 11311 | 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 4 ∈ ℕ0 | ||
Theorem | 5nn0 11312 | 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 5 ∈ ℕ0 | ||
Theorem | 6nn0 11313 | 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 6 ∈ ℕ0 | ||
Theorem | 7nn0 11314 | 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 7 ∈ ℕ0 | ||
Theorem | 8nn0 11315 | 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 8 ∈ ℕ0 | ||
Theorem | 9nn0 11316 | 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 9 ∈ ℕ0 | ||
Theorem | 10nn0OLD 11317 | Obsolete version of 10nn0 11516 as of 6-Sep-2021. (Contributed by Mario Carneiro, 19-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 10 ∈ ℕ0 | ||
Theorem | nn0ge0 11318 | A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | ||
Theorem | nn0nlt0 11319 | A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0) | ||
Theorem | nn0ge0i 11320 | Nonnegative integers are nonnegative. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 0 ≤ 𝑁 | ||
Theorem | nn0le0eq0 11321 | A nonnegative integer is less than or equal to zero iff it is equal to zero. (Contributed by NM, 9-Dec-2005.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0)) | ||
Theorem | nn0p1gt0 11322 | A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) | ||
Theorem | nnnn0addcl 11323 | A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) | ||
Theorem | nn0nnaddcl 11324 | A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | ||
Theorem | 0mnnnnn0 11325 | The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.) |
⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) | ||
Theorem | un0addcl 11326 | If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ 𝑇 = (𝑆 ∪ {0}) & ⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 + 𝑁) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ (𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) → (𝑀 + 𝑁) ∈ 𝑇) | ||
Theorem | un0mulcl 11327 | If 𝑆 is closed under multiplication, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ 𝑇 = (𝑆 ∪ {0}) & ⊢ ((𝜑 ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → (𝑀 · 𝑁) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ (𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) → (𝑀 · 𝑁) ∈ 𝑇) | ||
Theorem | nn0addcl 11328 | Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) | ||
Theorem | nn0mulcl 11329 | Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) | ||
Theorem | nn0addcli 11330 | Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑀 + 𝑁) ∈ ℕ0 | ||
Theorem | nn0mulcli 11331 | Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑀 · 𝑁) ∈ ℕ0 | ||
Theorem | nn0p1nn 11332 | A nonnegative integer plus 1 is a positive integer. Strengthening of peano2nn 11032. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) | ||
Theorem | peano2nn0 11333 | Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | ||
Theorem | nnm1nn0 11334 | A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | ||
Theorem | elnn0nn 11335 | The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ)) | ||
Theorem | elnnnn0 11336 | The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) | ||
Theorem | elnnnn0b 11337 | The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) | ||
Theorem | elnnnn0c 11338 | The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | ||
Theorem | nn0addge1 11339 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁)) | ||
Theorem | nn0addge2 11340 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝑁 + 𝐴)) | ||
Theorem | nn0addge1i 11341 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝐴 ≤ (𝐴 + 𝑁) | ||
Theorem | nn0addge2i 11342 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝐴 ≤ (𝑁 + 𝐴) | ||
Theorem | nn0sub 11343 | Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
Theorem | ltsubnn0 11344 | Subtracting a nonnegative integer from a nonnegative integer which is greater than the first one results in a nonnegative integer. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐵 < 𝐴 → (𝐴 − 𝐵) ∈ ℕ0)) | ||
Theorem | nn0negleid 11345 | A nonnegative integer is greater than or equal to its negative. (Contributed by AV, 13-Aug-2021.) |
⊢ (𝐴 ∈ ℕ0 → -𝐴 ≤ 𝐴) | ||
Theorem | difgtsumgt 11346 | If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) | ||
Theorem | nn0le2xi 11347 | A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ≤ (2 · 𝑁) | ||
Theorem | nn0lele2xi 11348 | 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑁 ≤ 𝑀 → 𝑁 ≤ (2 · 𝑀)) | ||
Theorem | frnnn0supp 11349 | Two ways to write the support of a function on ℕ0. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by AV, 7-Jul-2019.) |
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | ||
Theorem | frnnn0fsupp 11350 | A function on ℕ0 is finitely supported iff its support is finite. (Contributed by AV, 8-Jul-2019.) |
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) | ||
Theorem | nnnn0d 11351 | A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0) | ||
Theorem | nn0red 11352 | A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | nn0cnd 11353 | A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
Theorem | nn0ge0d 11354 | A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
Theorem | nn0addcld 11355 | Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) | ||
Theorem | nn0mulcld 11356 | Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ0) | ||
Theorem | nn0readdcl 11357 | Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | nn0n0n1ge2 11358 | A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) | ||
Theorem | nn0n0n1ge2b 11359 | A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | ||
Theorem | nn0ge2m1nn 11360 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) | ||
Theorem | nn0ge2m1nn0 11361 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0) | ||
Theorem | nn0nndivcl 11362 | Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ) | ||
The function values of the hash (set size) function are either nonnegative integers or positive infinity, see hashf 13125. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers ℝ*, see df-xr 10078. The definition of extended nonnegative integers can be used in Ramsey theory, because the Ramsey number is either a nonnegative integer or plus infinity, see ramcl2 15720, or for the degree of polynomials, see mdegcl 23829, or for the degree of vertices in graph theory, see vtxdgf 26367. | ||
Syntax | cxnn0 11363 | The set of extended nonnegative integers. |
class ℕ0* | ||
Definition | df-xnn0 11364 | Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers ℝ*, see df-xr 10078. (Contributed by AV, 10-Dec-2020.) |
⊢ ℕ0* = (ℕ0 ∪ {+∞}) | ||
Theorem | elxnn0 11365 | An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | ||
Theorem | nn0ssxnn0 11366 | The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
⊢ ℕ0 ⊆ ℕ0* | ||
Theorem | nn0xnn0 11367 | A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) | ||
Theorem | xnn0xr 11368 | An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | ||
Theorem | 0xnn0 11369 | Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
⊢ 0 ∈ ℕ0* | ||
Theorem | pnf0xnn0 11370 | Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
⊢ +∞ ∈ ℕ0* | ||
Theorem | nn0nepnf 11371 | No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) | ||
Theorem | nn0xnn0d 11372 | A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0*) | ||
Theorem | nn0nepnfd 11373 | No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
Theorem | xnn0nemnf 11374 | No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) | ||
Theorem | xnn0xrnemnf 11375 | The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | ||
Theorem | xnn0nnn0pnf 11376 | An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | ||
Syntax | cz 11377 | Extend class notation to include the class of integers. |
class ℤ | ||
Definition | df-z 11378 | Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.) |
⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} | ||
Theorem | elz 11379 | Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | ||
Theorem | nnnegz 11380 | The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.) |
⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | ||
Theorem | zre 11381 | An integer is a real. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | ||
Theorem | zcn 11382 | An integer is a complex number. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | ||
Theorem | zrei 11383 | An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
⊢ 𝐴 ∈ ℤ ⇒ ⊢ 𝐴 ∈ ℝ | ||
Theorem | zssre 11384 | The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
⊢ ℤ ⊆ ℝ | ||
Theorem | zsscn 11385 | The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
⊢ ℤ ⊆ ℂ | ||
Theorem | zex 11386 | The set of integers exists. See also zexALT 11396. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ℤ ∈ V | ||
Theorem | elnnz 11387 | Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | ||
Theorem | 0z 11388 | Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
⊢ 0 ∈ ℤ | ||
Theorem | 0zd 11389 | Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝜑 → 0 ∈ ℤ) | ||
Theorem | elnn0z 11390 | Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | ||
Theorem | elznn0nn 11391 | Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | ||
Theorem | elznn0 11392 | Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | ||
Theorem | elznn 11393 | Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) | ||
Theorem | elz2 11394* | Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) | ||
Theorem | dfz2 11395 | Alternative definition of the integers, based on elz2 11394. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ ℤ = ( − “ (ℕ × ℕ)) | ||
Theorem | zexALT 11396 | Alternate proof of zex 11386. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℤ ∈ V | ||
Theorem | nnssz 11397 | Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) |
⊢ ℕ ⊆ ℤ | ||
Theorem | nn0ssz 11398 | Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
⊢ ℕ0 ⊆ ℤ | ||
Theorem | nnz 11399 | A positive integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
Theorem | nn0z 11400 | A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |