Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfunresadj Structured version   Visualization version   GIF version

Theorem eqfunresadj 31659
Description: Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
eqfunresadj (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌})))

Proof of Theorem eqfunresadj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5426 . 2 Rel (𝐹 ↾ (𝑋 ∪ {𝑌}))
2 relres 5426 . 2 Rel (𝐺 ↾ (𝑋 ∪ {𝑌}))
3 breq 4655 . . . . 5 ((𝐹𝑋) = (𝐺𝑋) → (𝑥(𝐹𝑋)𝑦𝑥(𝐺𝑋)𝑦))
433ad2ant2 1083 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹𝑋)𝑦𝑥(𝐺𝑋)𝑦))
5 velsn 4193 . . . . . . 7 (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌)
6 simp33 1099 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹𝑌) = (𝐺𝑌))
76eqeq1d 2624 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐹𝑌) = 𝑦 ↔ (𝐺𝑌) = 𝑦))
8 simp1l 1085 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → Fun 𝐹)
9 simp31 1097 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → 𝑌 ∈ dom 𝐹)
10 funbrfvb 6238 . . . . . . . . . 10 ((Fun 𝐹𝑌 ∈ dom 𝐹) → ((𝐹𝑌) = 𝑦𝑌𝐹𝑦))
118, 9, 10syl2anc 693 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐹𝑌) = 𝑦𝑌𝐹𝑦))
12 simp1r 1086 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → Fun 𝐺)
13 simp32 1098 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → 𝑌 ∈ dom 𝐺)
14 funbrfvb 6238 . . . . . . . . . 10 ((Fun 𝐺𝑌 ∈ dom 𝐺) → ((𝐺𝑌) = 𝑦𝑌𝐺𝑦))
1512, 13, 14syl2anc 693 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐺𝑌) = 𝑦𝑌𝐺𝑦))
167, 11, 153bitr3d 298 . . . . . . . 8 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑌𝐹𝑦𝑌𝐺𝑦))
17 breq1 4656 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑥𝐹𝑦𝑌𝐹𝑦))
18 breq1 4656 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑥𝐺𝑦𝑌𝐺𝑦))
1917, 18bibi12d 335 . . . . . . . 8 (𝑥 = 𝑌 → ((𝑥𝐹𝑦𝑥𝐺𝑦) ↔ (𝑌𝐹𝑦𝑌𝐺𝑦)))
2016, 19syl5ibrcom 237 . . . . . . 7 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥 = 𝑌 → (𝑥𝐹𝑦𝑥𝐺𝑦)))
215, 20syl5bi 232 . . . . . 6 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥 ∈ {𝑌} → (𝑥𝐹𝑦𝑥𝐺𝑦)))
2221pm5.32rd 672 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝑥𝐹𝑦𝑥 ∈ {𝑌}) ↔ (𝑥𝐺𝑦𝑥 ∈ {𝑌})))
23 vex 3203 . . . . . 6 𝑦 ∈ V
2423brres 5402 . . . . 5 (𝑥(𝐹 ↾ {𝑌})𝑦 ↔ (𝑥𝐹𝑦𝑥 ∈ {𝑌}))
2523brres 5402 . . . . 5 (𝑥(𝐺 ↾ {𝑌})𝑦 ↔ (𝑥𝐺𝑦𝑥 ∈ {𝑌}))
2622, 24, 253bitr4g 303 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹 ↾ {𝑌})𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
274, 26orbi12d 746 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦) ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦)))
28 resundi 5410 . . . . 5 (𝐹 ↾ (𝑋 ∪ {𝑌})) = ((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))
2928breqi 4659 . . . 4 (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦)
30 brun 4703 . . . 4 (𝑥((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦))
3129, 30bitri 264 . . 3 (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦))
32 resundi 5410 . . . . 5 (𝐺 ↾ (𝑋 ∪ {𝑌})) = ((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))
3332breqi 4659 . . . 4 (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦)
34 brun 4703 . . . 4 (𝑥((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
3533, 34bitri 264 . . 3 (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
3627, 31, 353bitr4g 303 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦))
371, 2, 36eqbrrdiv 5218 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  cun 3572  {csn 4177   class class class wbr 4653  dom cdm 5114  cres 5116  Fun wfun 5882  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  eqfunressuc  31660
  Copyright terms: Public domain W3C validator