![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction rule). (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | 1 | pm5.32d 671 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
3 | ancom 466 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
4 | ancom 466 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4g 303 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: anbi1d 741 pm5.71 977 omord 7648 oeeui 7682 omxpenlem 8061 wemapwe 8594 fin23lem26 9147 1idpr 9851 repsdf2 13525 smueqlem 15212 tchcph 23036 upgr2wlk 26564 upgrspthswlk 26634 isspthonpth 26645 iswwlksnx 26731 wwlksnextwrd 26792 rusgrnumwwlkl1 26863 isclwwlksnx 26889 eupth2lem3lem6 27093 ordtconnlem1 29970 eqfunresadj 31659 outsideofeu 32238 matunitlindf 33407 ftc1anclem6 33490 cvrval5 34701 cdleme0ex2N 35511 dihglb2 36631 mrefg2 37270 rmydioph 37581 islssfg2 37641 fsovrfovd 38303 elfz2z 41325 |
Copyright terms: Public domain | W3C validator |