![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqvinc | Structured version Visualization version GIF version |
Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Thierry Arnoux, 23-Jan-2022.) |
Ref | Expression |
---|---|
eqvinc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eqvinc | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvinc.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eqvincg 3329 | . 2 ⊢ (𝐴 ∈ V → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
This theorem is referenced by: eqvincf 3331 dff13 6512 f1eqcocnv 6556 tfindsg 7060 findsg 7093 findcard2s 8201 indpi 9729 fcoinvbr 29419 dfrdg4 32058 bj-elsngl 32956 |
Copyright terms: Public domain | W3C validator |