MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvinc Structured version   Visualization version   GIF version

Theorem eqvinc 3330
Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Thierry Arnoux, 23-Jan-2022.)
Hypothesis
Ref Expression
eqvinc.1 𝐴 ∈ V
Assertion
Ref Expression
eqvinc (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqvinc
StepHypRef Expression
1 eqvinc.1 . 2 𝐴 ∈ V
2 eqvincg 3329 . 2 (𝐴 ∈ V → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵)))
31, 2ax-mp 5 1 (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1486  df-ex 1705  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  eqvincf  3331  dff13  6512  f1eqcocnv  6556  tfindsg  7060  findsg  7093  findcard2s  8201  indpi  9729  fcoinvbr  29419  dfrdg4  32058  bj-elsngl  32956
  Copyright terms: Public domain W3C validator