MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg Structured version   Visualization version   GIF version

Theorem tfindsg 7060
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal 𝐵 instead of zero. Remark in [TakeutiZaring] p. 57. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindsg.1 (𝑥 = 𝐵 → (𝜑𝜓))
tfindsg.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfindsg.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfindsg.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfindsg.5 (𝐵 ∈ On → 𝜓)
tfindsg.6 (((𝑦 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝑦) → (𝜒𝜃))
tfindsg.7 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
Assertion
Ref Expression
tfindsg (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝐴) → 𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfindsg
StepHypRef Expression
1 sseq2 3627 . . . . . . 7 (𝑥 = ∅ → (𝐵𝑥𝐵 ⊆ ∅))
21adantl 482 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝐵𝑥𝐵 ⊆ ∅))
3 eqeq2 2633 . . . . . . . 8 (𝐵 = ∅ → (𝑥 = 𝐵𝑥 = ∅))
4 tfindsg.1 . . . . . . . 8 (𝑥 = 𝐵 → (𝜑𝜓))
53, 4syl6bir 244 . . . . . . 7 (𝐵 = ∅ → (𝑥 = ∅ → (𝜑𝜓)))
65imp 445 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝜑𝜓))
72, 6imbi12d 334 . . . . 5 ((𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
81imbi1d 331 . . . . . 6 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜑)))
9 ss0 3974 . . . . . . . . 9 (𝐵 ⊆ ∅ → 𝐵 = ∅)
109con3i 150 . . . . . . . 8 𝐵 = ∅ → ¬ 𝐵 ⊆ ∅)
1110pm2.21d 118 . . . . . . 7 𝐵 = ∅ → (𝐵 ⊆ ∅ → (𝜑𝜓)))
1211pm5.74d 262 . . . . . 6 𝐵 = ∅ → ((𝐵 ⊆ ∅ → 𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
138, 12sylan9bbr 737 . . . . 5 ((¬ 𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
147, 13pm2.61ian 831 . . . 4 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
1514imbi2d 330 . . 3 (𝑥 = ∅ → ((𝐵 ∈ On → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ On → (𝐵 ⊆ ∅ → 𝜓))))
16 sseq2 3627 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
17 tfindsg.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
1816, 17imbi12d 334 . . . 4 (𝑥 = 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵𝑦𝜒)))
1918imbi2d 330 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ On → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ On → (𝐵𝑦𝜒))))
20 sseq2 3627 . . . . 5 (𝑥 = suc 𝑦 → (𝐵𝑥𝐵 ⊆ suc 𝑦))
21 tfindsg.3 . . . . 5 (𝑥 = suc 𝑦 → (𝜑𝜃))
2220, 21imbi12d 334 . . . 4 (𝑥 = suc 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ suc 𝑦𝜃)))
2322imbi2d 330 . . 3 (𝑥 = suc 𝑦 → ((𝐵 ∈ On → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ On → (𝐵 ⊆ suc 𝑦𝜃))))
24 sseq2 3627 . . . . 5 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
25 tfindsg.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
2624, 25imbi12d 334 . . . 4 (𝑥 = 𝐴 → ((𝐵𝑥𝜑) ↔ (𝐵𝐴𝜏)))
2726imbi2d 330 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ On → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ On → (𝐵𝐴𝜏))))
28 tfindsg.5 . . . 4 (𝐵 ∈ On → 𝜓)
2928a1d 25 . . 3 (𝐵 ∈ On → (𝐵 ⊆ ∅ → 𝜓))
30 vex 3203 . . . . . . . . . . . . . 14 𝑦 ∈ V
3130sucex 7011 . . . . . . . . . . . . 13 suc 𝑦 ∈ V
3231eqvinc 3330 . . . . . . . . . . . 12 (suc 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵))
3328, 4syl5ibr 236 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐵 ∈ On → 𝜑))
3421biimpd 219 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝜑𝜃))
3533, 34sylan9r 690 . . . . . . . . . . . . 13 ((𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ On → 𝜃))
3635exlimiv 1858 . . . . . . . . . . . 12 (∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ On → 𝜃))
3732, 36sylbi 207 . . . . . . . . . . 11 (suc 𝑦 = 𝐵 → (𝐵 ∈ On → 𝜃))
3837eqcoms 2630 . . . . . . . . . 10 (𝐵 = suc 𝑦 → (𝐵 ∈ On → 𝜃))
3938imim2i 16 . . . . . . . . 9 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ On → 𝜃)))
4039a1d 25 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ On → 𝜃))))
4140com4r 94 . . . . . . 7 (𝐵 ∈ On → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
4241adantl 482 . . . . . 6 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
43 df-ne 2795 . . . . . . . . 9 (𝐵 ≠ suc 𝑦 ↔ ¬ 𝐵 = suc 𝑦)
4443anbi2i 730 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ (𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦))
45 annim 441 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
4644, 45bitri 264 . . . . . . 7 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
47 onsssuc 5813 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦𝐵 ∈ suc 𝑦))
48 suceloni 7013 . . . . . . . . . . 11 (𝑦 ∈ On → suc 𝑦 ∈ On)
49 onelpss 5764 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ suc 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5048, 49sylan2 491 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5147, 50bitrd 268 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5251ancoms 469 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
53 tfindsg.6 . . . . . . . . . . . 12 (((𝑦 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝑦) → (𝜒𝜃))
5453ex 450 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → (𝜒𝜃)))
55 ax-1 6 . . . . . . . . . . 11 (𝜃 → (𝐵 ⊆ suc 𝑦𝜃))
5654, 55syl8 76 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → (𝜒 → (𝐵 ⊆ suc 𝑦𝜃))))
5756a2d 29 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → ((𝐵𝑦𝜒) → (𝐵𝑦 → (𝐵 ⊆ suc 𝑦𝜃))))
5857com23 86 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
5952, 58sylbird 250 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6046, 59syl5bir 233 . . . . . 6 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6142, 60pm2.61d 170 . . . . 5 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃)))
6261ex 450 . . . 4 (𝑦 ∈ On → (𝐵 ∈ On → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6362a2d 29 . . 3 (𝑦 ∈ On → ((𝐵 ∈ On → (𝐵𝑦𝜒)) → (𝐵 ∈ On → (𝐵 ⊆ suc 𝑦𝜃))))
64 pm2.27 42 . . . . . . . . 9 (𝐵 ∈ On → ((𝐵 ∈ On → (𝐵𝑦𝜒)) → (𝐵𝑦𝜒)))
6564ralimdv 2963 . . . . . . . 8 (𝐵 ∈ On → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → ∀𝑦𝑥 (𝐵𝑦𝜒)))
6665ad2antlr 763 . . . . . . 7 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐵𝑥) → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → ∀𝑦𝑥 (𝐵𝑦𝜒)))
67 tfindsg.7 . . . . . . 7 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
6866, 67syld 47 . . . . . 6 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐵𝑥) → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → 𝜑))
6968exp31 630 . . . . 5 (Lim 𝑥 → (𝐵 ∈ On → (𝐵𝑥 → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → 𝜑))))
7069com3l 89 . . . 4 (𝐵 ∈ On → (𝐵𝑥 → (Lim 𝑥 → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → 𝜑))))
7170com4t 93 . . 3 (Lim 𝑥 → (∀𝑦𝑥 (𝐵 ∈ On → (𝐵𝑦𝜒)) → (𝐵 ∈ On → (𝐵𝑥𝜑))))
7215, 19, 23, 27, 29, 63, 71tfinds 7059 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐵𝐴𝜏)))
7372imp31 448 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝐴) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915  Oncon0 5723  Lim wlim 5724  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729
This theorem is referenced by:  tfindsg2  7061  oaordi  7626  infensuc  8138  r1ordg  8641
  Copyright terms: Public domain W3C validator