MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indpi Structured version   Visualization version   GIF version

Theorem indpi 9729
Description: Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Hypotheses
Ref Expression
indpi.1 (𝑥 = 1𝑜 → (𝜑𝜓))
indpi.2 (𝑥 = 𝑦 → (𝜑𝜒))
indpi.3 (𝑥 = (𝑦 +N 1𝑜) → (𝜑𝜃))
indpi.4 (𝑥 = 𝐴 → (𝜑𝜏))
indpi.5 𝜓
indpi.6 (𝑦N → (𝜒𝜃))
Assertion
Ref Expression
indpi (𝐴N𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem indpi
StepHypRef Expression
1 1pi 9705 . . . . . . 7 1𝑜N
21elexi 3213 . . . . . 6 1𝑜 ∈ V
32eqvinc 3330 . . . . 5 (1𝑜 = 𝐴 ↔ ∃𝑥(𝑥 = 1𝑜𝑥 = 𝐴))
4 indpi.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
5 indpi.5 . . . . . 6 𝜓
6 indpi.1 . . . . . 6 (𝑥 = 1𝑜 → (𝜑𝜓))
75, 6mpbiri 248 . . . . 5 (𝑥 = 1𝑜𝜑)
83, 4, 7gencl 3235 . . . 4 (1𝑜 = 𝐴𝜏)
98eqcoms 2630 . . 3 (𝐴 = 1𝑜𝜏)
109a1i 11 . 2 (𝐴N → (𝐴 = 1𝑜𝜏))
11 pinn 9700 . . . . 5 (𝐴N𝐴 ∈ ω)
12 elni2 9699 . . . . . 6 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
13 nnord 7073 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
14 ordsucss 7018 . . . . . . . . 9 (Ord 𝐴 → (∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴))
1513, 14syl 17 . . . . . . . 8 (𝐴 ∈ ω → (∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴))
16 df-1o 7560 . . . . . . . . 9 1𝑜 = suc ∅
1716sseq1i 3629 . . . . . . . 8 (1𝑜𝐴 ↔ suc ∅ ⊆ 𝐴)
1815, 17syl6ibr 242 . . . . . . 7 (𝐴 ∈ ω → (∅ ∈ 𝐴 → 1𝑜𝐴))
1918imp 445 . . . . . 6 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → 1𝑜𝐴)
2012, 19sylbi 207 . . . . 5 (𝐴N → 1𝑜𝐴)
21 1onn 7719 . . . . . 6 1𝑜 ∈ ω
22 eleq1 2689 . . . . . . . . 9 (𝑥 = 1𝑜 → (𝑥N ↔ 1𝑜N))
23 breq2 4657 . . . . . . . . 9 (𝑥 = 1𝑜 → (1𝑜 <N 𝑥 ↔ 1𝑜 <N 1𝑜))
2422, 23anbi12d 747 . . . . . . . 8 (𝑥 = 1𝑜 → ((𝑥N ∧ 1𝑜 <N 𝑥) ↔ (1𝑜N ∧ 1𝑜 <N 1𝑜)))
2524, 6imbi12d 334 . . . . . . 7 (𝑥 = 1𝑜 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((1𝑜N ∧ 1𝑜 <N 1𝑜) → 𝜓)))
26 eleq1 2689 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥N𝑦N))
27 breq2 4657 . . . . . . . . 9 (𝑥 = 𝑦 → (1𝑜 <N 𝑥 ↔ 1𝑜 <N 𝑦))
2826, 27anbi12d 747 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) ↔ (𝑦N ∧ 1𝑜 <N 𝑦)))
29 indpi.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
3028, 29imbi12d 334 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒)))
31 pinn 9700 . . . . . . . . . . . . . . 15 (𝑥N𝑥 ∈ ω)
32 eleq1 2689 . . . . . . . . . . . . . . . 16 (𝑥 = suc 𝑦 → (𝑥 ∈ ω ↔ suc 𝑦 ∈ ω))
33 peano2b 7081 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
3432, 33syl6bbr 278 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω))
3531, 34syl5ib 234 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝑥N𝑦 ∈ ω))
3635adantrd 484 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → 𝑦 ∈ ω))
37 ltpiord 9709 . . . . . . . . . . . . . . . 16 ((1𝑜N𝑥N) → (1𝑜 <N 𝑥 ↔ 1𝑜𝑥))
381, 37mpan 706 . . . . . . . . . . . . . . 15 (𝑥N → (1𝑜 <N 𝑥 ↔ 1𝑜𝑥))
3938biimpa 501 . . . . . . . . . . . . . 14 ((𝑥N ∧ 1𝑜 <N 𝑥) → 1𝑜𝑥)
40 eleq2 2690 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → (1𝑜𝑥 ↔ 1𝑜 ∈ suc 𝑦))
41 elsuci 5791 . . . . . . . . . . . . . . . 16 (1𝑜 ∈ suc 𝑦 → (1𝑜𝑦 ∨ 1𝑜 = 𝑦))
42 ne0i 3921 . . . . . . . . . . . . . . . . 17 (1𝑜𝑦𝑦 ≠ ∅)
43 0lt1o 7584 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ 1𝑜
44 eleq2 2690 . . . . . . . . . . . . . . . . . . 19 (1𝑜 = 𝑦 → (∅ ∈ 1𝑜 ↔ ∅ ∈ 𝑦))
4543, 44mpbii 223 . . . . . . . . . . . . . . . . . 18 (1𝑜 = 𝑦 → ∅ ∈ 𝑦)
46 ne0i 3921 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑦𝑦 ≠ ∅)
4745, 46syl 17 . . . . . . . . . . . . . . . . 17 (1𝑜 = 𝑦𝑦 ≠ ∅)
4842, 47jaoi 394 . . . . . . . . . . . . . . . 16 ((1𝑜𝑦 ∨ 1𝑜 = 𝑦) → 𝑦 ≠ ∅)
4941, 48syl 17 . . . . . . . . . . . . . . 15 (1𝑜 ∈ suc 𝑦𝑦 ≠ ∅)
5040, 49syl6bi 243 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (1𝑜𝑥𝑦 ≠ ∅))
5139, 50syl5 34 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → 𝑦 ≠ ∅))
5236, 51jcad 555 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → (𝑦 ∈ ω ∧ 𝑦 ≠ ∅)))
53 elni 9698 . . . . . . . . . . . 12 (𝑦N ↔ (𝑦 ∈ ω ∧ 𝑦 ≠ ∅))
5452, 53syl6ibr 242 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → 𝑦N))
55 simpr 477 . . . . . . . . . . . 12 ((𝑥N ∧ 1𝑜 <N 𝑥) → 1𝑜 <N 𝑥)
56 breq2 4657 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (1𝑜 <N 𝑥 ↔ 1𝑜 <N suc 𝑦))
5755, 56syl5ib 234 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → 1𝑜 <N suc 𝑦))
5854, 57jcad 555 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → (𝑦N ∧ 1𝑜 <N suc 𝑦)))
59 addclpi 9714 . . . . . . . . . . . . . . 15 ((𝑦N ∧ 1𝑜N) → (𝑦 +N 1𝑜) ∈ N)
601, 59mpan2 707 . . . . . . . . . . . . . 14 (𝑦N → (𝑦 +N 1𝑜) ∈ N)
61 addpiord 9706 . . . . . . . . . . . . . . . . . . 19 ((𝑦N ∧ 1𝑜N) → (𝑦 +N 1𝑜) = (𝑦 +𝑜 1𝑜))
621, 61mpan2 707 . . . . . . . . . . . . . . . . . 18 (𝑦N → (𝑦 +N 1𝑜) = (𝑦 +𝑜 1𝑜))
63 pion 9701 . . . . . . . . . . . . . . . . . . 19 (𝑦N𝑦 ∈ On)
64 oa1suc 7611 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → (𝑦 +𝑜 1𝑜) = suc 𝑦)
6563, 64syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦N → (𝑦 +𝑜 1𝑜) = suc 𝑦)
6662, 65eqtrd 2656 . . . . . . . . . . . . . . . . 17 (𝑦N → (𝑦 +N 1𝑜) = suc 𝑦)
6766eqeq2d 2632 . . . . . . . . . . . . . . . 16 (𝑦N → (𝑥 = (𝑦 +N 1𝑜) ↔ 𝑥 = suc 𝑦))
6867biimparc 504 . . . . . . . . . . . . . . 15 ((𝑥 = suc 𝑦𝑦N) → 𝑥 = (𝑦 +N 1𝑜))
6968eleq1d 2686 . . . . . . . . . . . . . 14 ((𝑥 = suc 𝑦𝑦N) → (𝑥N ↔ (𝑦 +N 1𝑜) ∈ N))
7060, 69syl5ibr 236 . . . . . . . . . . . . 13 ((𝑥 = suc 𝑦𝑦N) → (𝑦N𝑥N))
7170ex 450 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝑦N → (𝑦N𝑥N)))
7271pm2.43d 53 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑦N𝑥N))
7356biimprd 238 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (1𝑜 <N suc 𝑦 → 1𝑜 <N 𝑥))
7472, 73anim12d 586 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → (𝑥N ∧ 1𝑜 <N 𝑥)))
7558, 74impbid 202 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) ↔ (𝑦N ∧ 1𝑜 <N suc 𝑦)))
7675imbi1d 331 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜑)))
77 indpi.3 . . . . . . . . . . . 12 (𝑥 = (𝑦 +N 1𝑜) → (𝜑𝜃))
7867, 77syl6bir 244 . . . . . . . . . . 11 (𝑦N → (𝑥 = suc 𝑦 → (𝜑𝜃)))
7978adantr 481 . . . . . . . . . 10 ((𝑦N ∧ 1𝑜 <N suc 𝑦) → (𝑥 = suc 𝑦 → (𝜑𝜃)))
8079com12 32 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → (𝜑𝜃)))
8180pm5.74d 262 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜑) ↔ ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜃)))
8276, 81bitrd 268 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜃)))
83 eleq1 2689 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥N𝐴N))
84 breq2 4657 . . . . . . . . 9 (𝑥 = 𝐴 → (1𝑜 <N 𝑥 ↔ 1𝑜 <N 𝐴))
8583, 84anbi12d 747 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥N ∧ 1𝑜 <N 𝑥) ↔ (𝐴N ∧ 1𝑜 <N 𝐴)))
8685, 4imbi12d 334 . . . . . . 7 (𝑥 = 𝐴 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((𝐴N ∧ 1𝑜 <N 𝐴) → 𝜏)))
8752a1i 12 . . . . . . 7 (1𝑜 ∈ ω → ((1𝑜N ∧ 1𝑜 <N 1𝑜) → 𝜓))
88 ltpiord 9709 . . . . . . . . . . . . . . 15 ((1𝑜N𝑦N) → (1𝑜 <N 𝑦 ↔ 1𝑜𝑦))
891, 88mpan 706 . . . . . . . . . . . . . 14 (𝑦N → (1𝑜 <N 𝑦 ↔ 1𝑜𝑦))
9089pm5.32i 669 . . . . . . . . . . . . 13 ((𝑦N ∧ 1𝑜 <N 𝑦) ↔ (𝑦N ∧ 1𝑜𝑦))
9190simplbi2 655 . . . . . . . . . . . 12 (𝑦N → (1𝑜𝑦 → (𝑦N ∧ 1𝑜 <N 𝑦)))
9291imim1d 82 . . . . . . . . . . 11 (𝑦N → (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → (1𝑜𝑦𝜒)))
93 ltrelpi 9711 . . . . . . . . . . . . . . 15 <N ⊆ (N × N)
9493brel 5168 . . . . . . . . . . . . . 14 (1𝑜 <N suc 𝑦 → (1𝑜N ∧ suc 𝑦N))
95 ltpiord 9709 . . . . . . . . . . . . . 14 ((1𝑜N ∧ suc 𝑦N) → (1𝑜 <N suc 𝑦 ↔ 1𝑜 ∈ suc 𝑦))
9694, 95syl 17 . . . . . . . . . . . . 13 (1𝑜 <N suc 𝑦 → (1𝑜 <N suc 𝑦 ↔ 1𝑜 ∈ suc 𝑦))
9796ibi 256 . . . . . . . . . . . 12 (1𝑜 <N suc 𝑦 → 1𝑜 ∈ suc 𝑦)
982eqvinc 3330 . . . . . . . . . . . . . . 15 (1𝑜 = 𝑦 ↔ ∃𝑥(𝑥 = 1𝑜𝑥 = 𝑦))
9998, 29, 7gencl 3235 . . . . . . . . . . . . . 14 (1𝑜 = 𝑦𝜒)
100 jao 534 . . . . . . . . . . . . . 14 ((1𝑜𝑦𝜒) → ((1𝑜 = 𝑦𝜒) → ((1𝑜𝑦 ∨ 1𝑜 = 𝑦) → 𝜒)))
10199, 100mpi 20 . . . . . . . . . . . . 13 ((1𝑜𝑦𝜒) → ((1𝑜𝑦 ∨ 1𝑜 = 𝑦) → 𝜒))
10241, 101syl5 34 . . . . . . . . . . . 12 ((1𝑜𝑦𝜒) → (1𝑜 ∈ suc 𝑦𝜒))
10397, 102syl5 34 . . . . . . . . . . 11 ((1𝑜𝑦𝜒) → (1𝑜 <N suc 𝑦𝜒))
10492, 103syl6com 37 . . . . . . . . . 10 (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → (𝑦N → (1𝑜 <N suc 𝑦𝜒)))
105104impd 447 . . . . . . . . 9 (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜒))
10616sseq1i 3629 . . . . . . . . . . 11 (1𝑜𝑦 ↔ suc ∅ ⊆ 𝑦)
107 0ex 4790 . . . . . . . . . . . 12 ∅ ∈ V
108 sucssel 5819 . . . . . . . . . . . 12 (∅ ∈ V → (suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦))
109107, 108ax-mp 5 . . . . . . . . . . 11 (suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦)
110106, 109sylbi 207 . . . . . . . . . 10 (1𝑜𝑦 → ∅ ∈ 𝑦)
111 elni2 9699 . . . . . . . . . . 11 (𝑦N ↔ (𝑦 ∈ ω ∧ ∅ ∈ 𝑦))
112 indpi.6 . . . . . . . . . . 11 (𝑦N → (𝜒𝜃))
113111, 112sylbir 225 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∅ ∈ 𝑦) → (𝜒𝜃))
114110, 113sylan2 491 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 1𝑜𝑦) → (𝜒𝜃))
115105, 114syl9r 78 . . . . . . . 8 ((𝑦 ∈ ω ∧ 1𝑜𝑦) → (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜃)))
116115adantlr 751 . . . . . . 7 (((𝑦 ∈ ω ∧ 1𝑜 ∈ ω) ∧ 1𝑜𝑦) → (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜃)))
11725, 30, 82, 86, 87, 116findsg 7093 . . . . . 6 (((𝐴 ∈ ω ∧ 1𝑜 ∈ ω) ∧ 1𝑜𝐴) → ((𝐴N ∧ 1𝑜 <N 𝐴) → 𝜏))
11821, 117mpanl2 717 . . . . 5 ((𝐴 ∈ ω ∧ 1𝑜𝐴) → ((𝐴N ∧ 1𝑜 <N 𝐴) → 𝜏))
11911, 20, 118syl2anc 693 . . . 4 (𝐴N → ((𝐴N ∧ 1𝑜 <N 𝐴) → 𝜏))
120119expd 452 . . 3 (𝐴N → (𝐴N → (1𝑜 <N 𝐴𝜏)))
121120pm2.43i 52 . 2 (𝐴N → (1𝑜 <N 𝐴𝜏))
122 nlt1pi 9728 . . . 4 ¬ 𝐴 <N 1𝑜
123 ltsopi 9710 . . . . . 6 <N Or N
124 sotric 5061 . . . . . 6 (( <N Or N ∧ (𝐴N ∧ 1𝑜N)) → (𝐴 <N 1𝑜 ↔ ¬ (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴)))
125123, 124mpan 706 . . . . 5 ((𝐴N ∧ 1𝑜N) → (𝐴 <N 1𝑜 ↔ ¬ (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴)))
1261, 125mpan2 707 . . . 4 (𝐴N → (𝐴 <N 1𝑜 ↔ ¬ (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴)))
127122, 126mtbii 316 . . 3 (𝐴N → ¬ ¬ (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴))
128127notnotrd 128 . 2 (𝐴N → (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴))
12910, 121, 128mpjaod 396 1 (𝐴N𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653   Or wor 5034  Ord word 5722  Oncon0 5723  suc csuc 5725  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553   +𝑜 coa 7557  Ncnpi 9666   +N cpli 9667   <N clti 9669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-ni 9694  df-pli 9695  df-lti 9697
This theorem is referenced by:  prlem934  9855
  Copyright terms: Public domain W3C validator