![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp44 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp44.1 | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
exp44 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp44.1 | . . 3 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) | |
2 | 1 | exp32 631 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
3 | 2 | expd 452 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: wefrc 5108 tz7.7 5749 oalimcl 7640 unbenlem 15612 rnelfm 21757 uspgr2wlkeqi 26544 1pthon2v 27013 spansncvi 28511 atom1d 29212 chirredlem3 29251 conway 31910 finminlem 32312 cvlcvr1 34626 lhpexle2lem 35295 trlord 35857 cdlemkid4 36222 dihord6apre 36545 dihglbcpreN 36589 |
Copyright terms: Public domain | W3C validator |