MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp44 Structured version   Visualization version   GIF version

Theorem exp44 641
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp44.1 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
Assertion
Ref Expression
exp44 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp44
StepHypRef Expression
1 exp44.1 . . 3 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
21exp32 631 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32expd 452 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  wefrc  5108  tz7.7  5749  oalimcl  7640  unbenlem  15612  rnelfm  21757  uspgr2wlkeqi  26544  1pthon2v  27013  spansncvi  28511  atom1d  29212  chirredlem3  29251  conway  31910  finminlem  32312  cvlcvr1  34626  lhpexle2lem  35295  trlord  35857  cdlemkid4  36222  dihord6apre  36545  dihglbcpreN  36589
  Copyright terms: Public domain W3C validator