Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglbcpreN Structured version   Visualization version   GIF version

Theorem dihglbcpreN 36589
Description: Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglbc.b 𝐵 = (Base‘𝐾)
dihglbc.g 𝐺 = (glb‘𝐾)
dihglbc.h 𝐻 = (LHyp‘𝐾)
dihglbc.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglbc.l = (le‘𝐾)
dihglbcpre.j = (join‘𝐾)
dihglbcpre.m = (meet‘𝐾)
dihglbcpre.a 𝐴 = (Atoms‘𝐾)
dihglbcpre.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglbcpre.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglbcpre.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglbcpre.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglbcpre.f 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
Assertion
Ref Expression
dihglbcpreN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑞,   𝑔,𝑞,𝑥,   𝑥,   𝐴,𝑔,𝑞,𝑥   𝐵,𝑞,𝑥   𝑥,𝐸   𝑥,𝐹   𝐺,𝑞,𝑥   𝑔,𝐻,𝑞,𝑥   𝐼,𝑞   𝑔,𝐾,𝑞,𝑥   𝑃,𝑔   𝑥,𝑅   𝑆,𝑞,𝑥   𝑇,𝑔,𝑥   𝑔,𝑊,𝑞,𝑥
Allowed substitution hints:   𝐵(𝑔)   𝑃(𝑥,𝑞)   𝑅(𝑔,𝑞)   𝑆(𝑔)   𝑇(𝑞)   𝐸(𝑔,𝑞)   𝐹(𝑔,𝑞)   𝐺(𝑔)   𝐼(𝑥,𝑔)   (𝑔,𝑞)   (𝑔)

Proof of Theorem dihglbcpreN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglbc.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dihglbc.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 36568 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(𝐺𝑆)))
433ad2ant1 1082 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel (𝐼‘(𝐺𝑆)))
5 simp2r 1088 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆 ≠ ∅)
6 n0 3931 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
75, 6sylib 208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥 𝑥𝑆)
8 simpr 477 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
9 simpl1 1064 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
101, 2dihvalrel 36568 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑥))
119, 10syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → Rel (𝐼𝑥))
128, 11jca 554 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥𝑆 ∧ Rel (𝐼𝑥)))
1312ex 450 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑥𝑆 → (𝑥𝑆 ∧ Rel (𝐼𝑥))))
1413eximdv 1846 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑥 𝑥𝑆 → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥))))
157, 14mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
16 df-rex 2918 . . . 4 (∃𝑥𝑆 Rel (𝐼𝑥) ↔ ∃𝑥(𝑥𝑆 ∧ Rel (𝐼𝑥)))
1715, 16sylibr 224 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑥𝑆 Rel (𝐼𝑥))
18 reliin 5240 . . 3 (∃𝑥𝑆 Rel (𝐼𝑥) → Rel 𝑥𝑆 (𝐼𝑥))
1917, 18syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → Rel 𝑥𝑆 (𝐼𝑥))
20 id 22 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊))
21 simp1 1061 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 simp1l 1085 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
23 hlclat 34645 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
2422, 23syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
25 simp2l 1087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → 𝑆𝐵)
26 dihglbc.b . . . . . . 7 𝐵 = (Base‘𝐾)
27 dihglbc.g . . . . . . 7 𝐺 = (glb‘𝐾)
2826, 27clatglbcl 17114 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
2924, 25, 28syl2anc 693 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐺𝑆) ∈ 𝐵)
30 simp3 1063 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ¬ (𝐺𝑆) 𝑊)
31 dihglbc.l . . . . . 6 = (le‘𝐾)
32 dihglbcpre.j . . . . . 6 = (join‘𝐾)
33 dihglbcpre.m . . . . . 6 = (meet‘𝐾)
34 dihglbcpre.a . . . . . 6 𝐴 = (Atoms‘𝐾)
3526, 31, 32, 33, 34, 1lhpmcvr2 35310 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
3621, 29, 30, 35syl12anc 1324 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
37 simpl1 1064 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3829adantr 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (𝐺𝑆) ∈ 𝐵)
39 simpl3 1066 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ¬ (𝐺𝑆) 𝑊)
40 simpr 477 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)))
41 dihglbcpre.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
42 dihglbcpre.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
43 dihglbcpre.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
44 dihglbcpre.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
45 dihglbcpre.f . . . . . . . . . 10 𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)
46 vex 3203 . . . . . . . . . 10 𝑓 ∈ V
47 vex 3203 . . . . . . . . . 10 𝑠 ∈ V
4826, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 36538 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ 𝐵 ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
4937, 38, 39, 40, 48syl121anc 1331 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆))))
50 simpl2r 1115 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → 𝑆 ≠ ∅)
51 r19.28zv 4066 . . . . . . . . . . 11 (𝑆 ≠ ∅ → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
5250, 51syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
53 simp11 1091 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simp12l 1174 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑆𝐵)
55 simp3 1063 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
5654, 55sseldd 3604 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑥𝐵)
57 simp13 1093 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ (𝐺𝑆) 𝑊)
58 simp11l 1172 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
5958, 23syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
6026, 31, 27clatglble 17125 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝑆) → (𝐺𝑆) 𝑥)
6159, 54, 55, 60syl3anc 1326 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) 𝑥)
62 hllat 34650 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Lat)
6358, 62syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
64293ad2ant1 1082 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ 𝐵)
65 simp11r 1173 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐻)
6626, 1lhpbase 35284 . . . . . . . . . . . . . . . . 17 (𝑊𝐻𝑊𝐵)
6765, 66syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑊𝐵)
6826, 31lattr 17056 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ ((𝐺𝑆) ∈ 𝐵𝑥𝐵𝑊𝐵)) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
6963, 64, 56, 67, 68syl13anc 1328 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (((𝐺𝑆) 𝑥𝑥 𝑊) → (𝐺𝑆) 𝑊))
7061, 69mpand 711 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 𝑊 → (𝐺𝑆) 𝑊))
7157, 70mtod 189 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ¬ 𝑥 𝑊)
72 simp2l 1087 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
73 simp2ll 1128 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐴)
7426, 34atbase 34576 . . . . . . . . . . . . . . . . 17 (𝑞𝐴𝑞𝐵)
7573, 74syl 17 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞𝐵)
7626, 33latmcl 17052 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝐺𝑆) ∈ 𝐵𝑊𝐵) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7763, 64, 67, 76syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → ((𝐺𝑆) 𝑊) ∈ 𝐵)
7826, 31, 32latlej1 17060 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑞𝐵 ∧ ((𝐺𝑆) 𝑊) ∈ 𝐵) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
7963, 75, 77, 78syl3anc 1326 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝑞 ((𝐺𝑆) 𝑊)))
80 simp2r 1088 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))
8179, 80breqtrd 4679 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 (𝐺𝑆))
8226, 31, 63, 75, 64, 56, 81, 61lattrd 17058 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝑞 𝑥)
8326, 31, 32, 33, 34atmod3i1 35150 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑞𝐴𝑥𝐵𝑊𝐵) ∧ 𝑞 𝑥) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
8458, 73, 56, 67, 82, 83syl131anc 1339 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = (𝑥 (𝑞 𝑊)))
85 eqid 2622 . . . . . . . . . . . . . . . . 17 (1.‘𝐾) = (1.‘𝐾)
8631, 32, 85, 34, 1lhpjat2 35307 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑞 𝑊) = (1.‘𝐾))
8753, 72, 86syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 𝑊) = (1.‘𝐾))
8887oveq2d 6666 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (𝑞 𝑊)) = (𝑥 (1.‘𝐾)))
89 hlol 34648 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OL)
9058, 89syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → 𝐾 ∈ OL)
9126, 33, 85olm11 34514 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OL ∧ 𝑥𝐵) → (𝑥 (1.‘𝐾)) = 𝑥)
9290, 56, 91syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑥 (1.‘𝐾)) = 𝑥)
9384, 88, 923eqtrd 2660 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (𝑞 (𝑥 𝑊)) = 𝑥)
9426, 31, 32, 33, 34, 1, 41, 42, 43, 44, 2, 45, 46, 47dihopelvalc 36538 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝐵 ∧ ¬ 𝑥 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑥 𝑊)) = 𝑥)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9553, 56, 71, 72, 93, 94syl122anc 1335 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
96953expa 1265 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ 𝑥𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
9796ralbidva 2985 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
98 simp11l 1172 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ HL)
9998, 23syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐾 ∈ CLat)
100 simp11 1091 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
101 simp3l 1089 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑓𝑇)
102 simp3r 1090 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑠𝐸)
10331, 34, 1, 41lhpocnel2 35305 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
104100, 103syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
105 simp2l 1087 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
10631, 34, 1, 42, 45ltrniotacl 35867 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐹𝑇)
107100, 104, 105, 106syl3anc 1326 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝐹𝑇)
1081, 42, 44tendocl 36055 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
109100, 102, 107, 108syl3anc 1326 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1101, 42ltrncnv 35432 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐹) ∈ 𝑇) → (𝑠𝐹) ∈ 𝑇)
111100, 109, 110syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑠𝐹) ∈ 𝑇)
1121, 42ltrnco 36007 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇(𝑠𝐹) ∈ 𝑇) → (𝑓(𝑠𝐹)) ∈ 𝑇)
113100, 101, 111, 112syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑓(𝑠𝐹)) ∈ 𝑇)
11426, 1, 42, 43trlcl 35451 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓(𝑠𝐹)) ∈ 𝑇) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
115100, 113, 114syl2anc 693 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵)
116 simp12l 1174 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → 𝑆𝐵)
11726, 31, 27clatleglb 17126 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ (𝑅‘(𝑓(𝑠𝐹))) ∈ 𝐵𝑆𝐵) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
11899, 115, 116, 117syl3anc 1326 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
1191183expa 1265 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) ∧ (𝑓𝑇𝑠𝐸)) → ((𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥))
120119pm5.32da 673 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ((𝑓𝑇𝑠𝐸) ∧ ∀𝑥𝑆 (𝑅‘(𝑓(𝑠𝐹))) 𝑥)))
12152, 97, 1203bitr4rd 301 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
122 opex 4932 . . . . . . . . . 10 𝑓, 𝑠⟩ ∈ V
123 eliin 4525 . . . . . . . . . 10 (⟨𝑓, 𝑠⟩ ∈ V → (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥)))
124122, 123ax-mp 5 . . . . . . . . 9 (⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆𝑓, 𝑠⟩ ∈ (𝐼𝑥))
125121, 124syl6bbr 278 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐹))) (𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
12649, 125bitrd 268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
127126exp44 641 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → (¬ 𝑞 𝑊 → ((𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))))
128127imp4a 614 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝑞𝐴 → ((¬ 𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))))
129128rexlimdv 3030 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 ((𝐺𝑆) 𝑊)) = (𝐺𝑆)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥))))
13036, 129mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝐺𝑆)) ↔ ⟨𝑓, 𝑠⟩ ∈ 𝑥𝑆 (𝐼𝑥)))
131130eqrelrdv2 5219 . 2 (((Rel (𝐼‘(𝐺𝑆)) ∧ Rel 𝑥𝑆 (𝐼𝑥)) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
1324, 19, 20, 131syl21anc 1325 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915  cop 4183   ciin 4521   class class class wbr 4653  ccnv 5113  ccom 5118  Rel wrel 5119  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  lecple 15948  occoc 15949  glbcglb 16943  joincjn 16944  meetcmee 16945  1.cp1 17038  Latclat 17045  CLatccla 17107  OLcol 34461  Atomscatm 34550  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  TEndoctendo 36040  DIsoHcdih 36517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518
This theorem is referenced by:  dihglbcN  36590
  Copyright terms: Public domain W3C validator