| Step | Hyp | Ref
| Expression |
| 1 | | filtop 21659 |
. . . . . . 7
⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) |
| 2 | 1 | 3ad2ant2 1083 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ 𝐿) |
| 3 | | simp1 1061 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑌 ∈ 𝐴) |
| 4 | | simp3 1063 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝐹:𝑌⟶𝑋) |
| 5 | | fmf 21749 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐿 ∧ 𝑌 ∈ 𝐴 ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋)) |
| 6 | 2, 3, 4, 5 | syl3anc 1326 |
. . . . 5
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋)) |
| 7 | | ffn 6045 |
. . . . 5
⊢ ((𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌)) |
| 8 | 6, 7 | syl 17 |
. . . 4
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌)) |
| 9 | | fvelrnb 6243 |
. . . 4
⊢ ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿)) |
| 10 | 8, 9 | syl 17 |
. . 3
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿)) |
| 11 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌⟶𝑋 → 𝐹 Fn 𝑌) |
| 12 | | dffn4 6121 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑌 ↔ 𝐹:𝑌–onto→ran 𝐹) |
| 13 | 11, 12 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝐹:𝑌⟶𝑋 → 𝐹:𝑌–onto→ran 𝐹) |
| 14 | | foima 6120 |
. . . . . . . . . . 11
⊢ (𝐹:𝑌–onto→ran 𝐹 → (𝐹 “ 𝑌) = ran 𝐹) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝐹:𝑌⟶𝑋 → (𝐹 “ 𝑌) = ran 𝐹) |
| 16 | 15 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹 “ 𝑌) = ran 𝐹) |
| 17 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋 ∈ 𝐿) |
| 18 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌)) |
| 19 | | simplr 792 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌⟶𝑋) |
| 20 | | fgcl 21682 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ (fBas‘𝑌) → (𝑌filGen𝑏) ∈ (Fil‘𝑌)) |
| 21 | | filtop 21659 |
. . . . . . . . . . . 12
⊢ ((𝑌filGen𝑏) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏)) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (fBas‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏)) |
| 23 | 22 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑌 ∈ (𝑌filGen𝑏)) |
| 24 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑌filGen𝑏) = (𝑌filGen𝑏) |
| 25 | 24 | imaelfm 21755 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑌 ∈ (𝑌filGen𝑏)) → (𝐹 “ 𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏)) |
| 26 | 17, 18, 19, 23, 25 | syl31anc 1329 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹 “ 𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏)) |
| 27 | 16, 26 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏)) |
| 28 | | eleq2 2690 |
. . . . . . . 8
⊢ (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → (ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏) ↔ ran 𝐹 ∈ 𝐿)) |
| 29 | 27, 28 | syl5ibcom 235 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿)) |
| 30 | 29 | ex 450 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐿 ∧ 𝐹:𝑌⟶𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿))) |
| 31 | 1, 30 | sylan 488 |
. . . . 5
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿))) |
| 32 | 31 | 3adant1 1079 |
. . . 4
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿))) |
| 33 | 32 | rexlimdv 3030 |
. . 3
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹 ∈ 𝐿)) |
| 34 | 10, 33 | sylbid 230 |
. 2
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) → ran 𝐹 ∈ 𝐿)) |
| 35 | | simpl2 1065 |
. . . . . . . . 9
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐿 ∈ (Fil‘𝑋)) |
| 36 | | filelss 21656 |
. . . . . . . . . 10
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡 ∈ 𝐿) → 𝑡 ⊆ 𝑋) |
| 37 | 36 | ex 450 |
. . . . . . . . 9
⊢ (𝐿 ∈ (Fil‘𝑋) → (𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋)) |
| 38 | 35, 37 | syl 17 |
. . . . . . . 8
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋)) |
| 39 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → 𝑡 ∈ 𝐿) |
| 40 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑡)) |
| 41 | | imaeq2 5462 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑡)) |
| 42 | 41 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑡 → ((◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥) ↔ (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑡))) |
| 43 | 42 | rspcev 3309 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ 𝐿 ∧ (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑡)) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥)) |
| 44 | 39, 40, 43 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥)) |
| 45 | | simpl1 1064 |
. . . . . . . . . . . . . 14
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 ∈ 𝐴) |
| 46 | | cnvimass 5485 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝐹 “ 𝑡) ⊆ dom 𝐹 |
| 47 | | fdm 6051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑌⟶𝑋 → dom 𝐹 = 𝑌) |
| 48 | 46, 47 | syl5sseq 3653 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ 𝑡) ⊆ 𝑌) |
| 49 | 48 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (◡𝐹 “ 𝑡) ⊆ 𝑌) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑡) ⊆ 𝑌) |
| 51 | 45, 50 | ssexd 4805 |
. . . . . . . . . . . . 13
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑡) ∈ V) |
| 52 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) |
| 53 | 52 | elrnmpt 5372 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ 𝑡) ∈ V → ((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥))) |
| 54 | 51, 53 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥))) |
| 55 | 54 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → ((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ 𝑡) = (◡𝐹 “ 𝑥))) |
| 56 | 44, 55 | mpbird 247 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → (◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 57 | | ssid 3624 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝑡) ⊆ (◡𝐹 “ 𝑡) |
| 58 | | ffun 6048 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) |
| 59 | 58 | 3ad2ant3 1084 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → Fun 𝐹) |
| 60 | 59 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → Fun 𝐹) |
| 61 | | funimass3 6333 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ (◡𝐹 “ 𝑡) ⊆ dom 𝐹) → ((𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡 ↔ (◡𝐹 “ 𝑡) ⊆ (◡𝐹 “ 𝑡))) |
| 62 | 60, 46, 61 | sylancl 694 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → ((𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡 ↔ (◡𝐹 “ 𝑡) ⊆ (◡𝐹 “ 𝑡))) |
| 63 | 57, 62 | mpbiri 248 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡) |
| 64 | | imaeq2 5462 |
. . . . . . . . . . . 12
⊢ (𝑠 = (◡𝐹 “ 𝑡) → (𝐹 “ 𝑠) = (𝐹 “ (◡𝐹 “ 𝑡))) |
| 65 | 64 | sseq1d 3632 |
. . . . . . . . . . 11
⊢ (𝑠 = (◡𝐹 “ 𝑡) → ((𝐹 “ 𝑠) ⊆ 𝑡 ↔ (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡)) |
| 66 | 65 | rspcev 3309 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ (◡𝐹 “ 𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡) |
| 67 | 56, 63, 66 | syl2anc 693 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑡 ∈ 𝐿) → ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡) |
| 68 | 67 | ex 450 |
. . . . . . . 8
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 → ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡)) |
| 69 | 38, 68 | jcad 555 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 → (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡))) |
| 70 | 35 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → 𝐿 ∈ (Fil‘𝑋)) |
| 71 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑠 ∈ V |
| 72 | 52 | elrnmpt 5372 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥))) |
| 73 | 71, 72 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥)) |
| 74 | | ssid 3624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑥) |
| 75 | 59 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → Fun 𝐹) |
| 76 | | cnvimass 5485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
| 77 | | funimass3 6333 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Fun
𝐹 ∧ (◡𝐹 “ 𝑥) ⊆ dom 𝐹) → ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑥 ↔ (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑥))) |
| 78 | 75, 76, 77 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑥 ↔ (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑥))) |
| 79 | 74, 78 | mpbiri 248 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑥) |
| 80 | | imassrn 5477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ ran 𝐹 |
| 81 | | ssin 3835 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑥 ∧ (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ ran 𝐹) ↔ (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ (𝑥 ∩ ran 𝐹)) |
| 82 | 79, 80, 81 | sylanblc 696 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ (𝑥 ∩ ran 𝐹)) |
| 83 | | elin 3796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑧 ∈ 𝑥 ∧ 𝑧 ∈ ran 𝐹)) |
| 84 | | fvelrnb 6243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹 Fn 𝑌 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧)) |
| 85 | 11, 84 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:𝑌⟶𝑋 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧)) |
| 86 | 85 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧)) |
| 87 | 86 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧)) |
| 88 | 75 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((𝑌 ∈
𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) ∧ (𝐹‘𝑦) ∈ 𝑥) → Fun 𝐹) |
| 89 | 88, 76 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝑌 ∈
𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) ∧ (𝐹‘𝑦) ∈ 𝑥) → (Fun 𝐹 ∧ (◡𝐹 “ 𝑥) ⊆ dom 𝐹)) |
| 90 | 59 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → Fun 𝐹) |
| 91 | 90 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → Fun 𝐹) |
| 92 | 47 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → dom 𝐹 = 𝑌) |
| 93 | 92 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → dom 𝐹 = 𝑌) |
| 94 | 93 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝑌)) |
| 95 | 94 | biimpar 502 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ dom 𝐹) |
| 96 | | fvimacnv 6332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
| 97 | 91, 95, 96 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
| 98 | 97 | biimpa 501 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝑌 ∈
𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) ∧ (𝐹‘𝑦) ∈ 𝑥) → 𝑦 ∈ (◡𝐹 “ 𝑥)) |
| 99 | | funfvima2 6493 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((Fun
𝐹 ∧ (◡𝐹 “ 𝑥) ⊆ dom 𝐹) → (𝑦 ∈ (◡𝐹 “ 𝑥) → (𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
| 100 | 89, 98, 99 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((((𝑌 ∈
𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) ∧ (𝐹‘𝑦) ∈ 𝑥) → (𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥))) |
| 101 | 100 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑦) ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
| 102 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹‘𝑦) = 𝑧 → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) |
| 103 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹‘𝑦) = 𝑧 → ((𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥)) ↔ 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
| 104 | 102, 103 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐹‘𝑦) = 𝑧 → (((𝐹‘𝑦) ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ (◡𝐹 “ 𝑥))) ↔ (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥))))) |
| 105 | 101, 104 | syl5ibcom 235 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) ∧ 𝑦 ∈ 𝑌) → ((𝐹‘𝑦) = 𝑧 → (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥))))) |
| 106 | 105 | rexlimdva 3031 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (∃𝑦 ∈ 𝑌 (𝐹‘𝑦) = 𝑧 → (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥))))) |
| 107 | 87, 106 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑧 ∈ ran 𝐹 → (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥))))) |
| 108 | 107 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑧 ∈ 𝑥 → (𝑧 ∈ ran 𝐹 → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥))))) |
| 109 | 108 | impd 447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ∈ ran 𝐹) → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
| 110 | 83, 109 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑧 ∈ (𝑥 ∩ ran 𝐹) → 𝑧 ∈ (𝐹 “ (◡𝐹 “ 𝑥)))) |
| 111 | 110 | ssrdv 3609 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑥 ∩ ran 𝐹) ⊆ (𝐹 “ (◡𝐹 “ 𝑥))) |
| 112 | 82, 111 | eqssd 3620 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ (◡𝐹 “ 𝑥)) = (𝑥 ∩ ran 𝐹)) |
| 113 | | filin 21658 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
| 114 | 113 | 3exp 1264 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐿 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐿 → (ran 𝐹 ∈ 𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿))) |
| 115 | 114 | com23 86 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐿 ∈ (Fil‘𝑋) → (ran 𝐹 ∈ 𝐿 → (𝑥 ∈ 𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿))) |
| 116 | 115 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (ran 𝐹 ∈ 𝐿 → (𝑥 ∈ 𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿))) |
| 117 | 116 | imp31 448 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
| 118 | 117 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
| 119 | 112, 118 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) ∧ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿) |
| 120 | 119 | exp32 631 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿))) |
| 121 | | imaeq2 5462 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = (◡𝐹 “ 𝑥) → (𝐹 “ 𝑠) = (𝐹 “ (◡𝐹 “ 𝑥))) |
| 122 | 121 | sseq1d 3632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ⊆ 𝑡 ↔ (𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡)) |
| 123 | 121 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ∈ 𝐿 ↔ (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿)) |
| 124 | 123 | imbi2d 330 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (◡𝐹 “ 𝑥) → ((𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿) ↔ (𝑡 ⊆ 𝑋 → (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿))) |
| 125 | 122, 124 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (◡𝐹 “ 𝑥) → (((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿)) ↔ ((𝐹 “ (◡𝐹 “ 𝑥)) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ (◡𝐹 “ 𝑥)) ∈ 𝐿)))) |
| 126 | 120, 125 | syl5ibrcom 237 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿)))) |
| 127 | 126 | rexlimdva 3031 |
. . . . . . . . . . . . . 14
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿)))) |
| 128 | 73, 127 | syl5bi 232 |
. . . . . . . . . . . . 13
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝐹 “ 𝑠) ∈ 𝐿)))) |
| 129 | 128 | imp44 622 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ 𝑠) ∈ 𝐿) |
| 130 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → 𝑡 ⊆ 𝑋) |
| 131 | | simprlr 803 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → (𝐹 “ 𝑠) ⊆ 𝑡) |
| 132 | | filss 21657 |
. . . . . . . . . . . 12
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ ((𝐹 “ 𝑠) ∈ 𝐿 ∧ 𝑡 ⊆ 𝑋 ∧ (𝐹 “ 𝑠) ⊆ 𝑡)) → 𝑡 ∈ 𝐿) |
| 133 | 70, 129, 130, 131, 132 | syl13anc 1328 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (𝐹 “ 𝑠) ⊆ 𝑡) ∧ 𝑡 ⊆ 𝑋)) → 𝑡 ∈ 𝐿) |
| 134 | 133 | exp44 641 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) |
| 135 | 134 | rexlimdv 3030 |
. . . . . . . . 9
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿))) |
| 136 | 135 | com23 86 |
. . . . . . . 8
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ⊆ 𝑋 → (∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡 → 𝑡 ∈ 𝐿))) |
| 137 | 136 | impd 447 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡) → 𝑡 ∈ 𝐿)) |
| 138 | 69, 137 | impbid 202 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡))) |
| 139 | 2 | adantr 481 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑋 ∈ 𝐿) |
| 140 | | rnelfmlem 21756 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) |
| 141 | | simpl3 1066 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐹:𝑌⟶𝑋) |
| 142 | | elfm 21751 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐿 ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡))) |
| 143 | 139, 140,
141, 142 | syl3anc 1326 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝐹 “ 𝑠) ⊆ 𝑡))) |
| 144 | 138, 143 | bitr4d 271 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
| 145 | 144 | eqrdv 2620 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐿 = ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) |
| 146 | 8 | adantr 481 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌)) |
| 147 | | fnfvelrn 6356 |
. . . . 5
⊢ (((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ ran (𝑋 FilMap 𝐹)) |
| 148 | 146, 140,
147 | syl2anc 693 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑋 FilMap 𝐹)‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ ran (𝑋 FilMap 𝐹)) |
| 149 | 145, 148 | eqeltrd 2701 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐿 ∈ ran (𝑋 FilMap 𝐹)) |
| 150 | 149 | ex 450 |
. 2
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (ran 𝐹 ∈ 𝐿 → 𝐿 ∈ ran (𝑋 FilMap 𝐹))) |
| 151 | 34, 150 | impbid 202 |
1
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹 ∈ 𝐿)) |