MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbenlem Structured version   Visualization version   GIF version

Theorem unbenlem 15612
Description: Lemma for unben 15613. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
unbenlem.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
Assertion
Ref Expression
unbenlem ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑚,𝐺,𝑛
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem unbenlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nnex 11026 . . . . 5 ℕ ∈ V
21ssex 4802 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
3 1z 11407 . . . . . . . 8 1 ∈ ℤ
4 unbenlem.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
53, 4om2uzf1oi 12752 . . . . . . 7 𝐺:ω–1-1-onto→(ℤ‘1)
6 nnuz 11723 . . . . . . . 8 ℕ = (ℤ‘1)
7 f1oeq3 6129 . . . . . . . 8 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
86, 7ax-mp 5 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8mpbir 221 . . . . . 6 𝐺:ω–1-1-onto→ℕ
10 f1ocnv 6149 . . . . . 6 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
11 f1of1 6136 . . . . . 6 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
129, 10, 11mp2b 10 . . . . 5 𝐺:ℕ–1-1→ω
13 f1ores 6151 . . . . 5 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
1412, 13mpan 706 . . . 4 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
15 f1oeng 7974 . . . 4 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
162, 14, 15syl2anc 693 . . 3 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
1716adantr 481 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ (𝐺𝐴))
18 imassrn 5477 . . . 4 (𝐺𝐴) ⊆ ran 𝐺
19 dfdm4 5316 . . . . 5 dom 𝐺 = ran 𝐺
20 f1of 6137 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
219, 20ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ
2221fdmi 6052 . . . . 5 dom 𝐺 = ω
2319, 22eqtr3i 2646 . . . 4 ran 𝐺 = ω
2418, 23sseqtri 3637 . . 3 (𝐺𝐴) ⊆ ω
253, 4om2uzuzi 12748 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ‘1))
2625, 6syl6eleqr 2712 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℕ)
27 breq1 4656 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑦) → (𝑚 < 𝑛 ↔ (𝐺𝑦) < 𝑛))
2827rexbidv 3052 . . . . . . . . . . 11 (𝑚 = (𝐺𝑦) → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
2928rspcv 3305 . . . . . . . . . 10 ((𝐺𝑦) ∈ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3026, 29syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3130adantr 481 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
32 f1ocnv 6149 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴):𝐴1-1-onto→(𝐺𝐴) → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
3314, 32syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℕ → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
34 f1ofun 6139 . . . . . . . . . . . . . . . . . 18 (𝐺:ω–1-1-onto→ℕ → Fun 𝐺)
359, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 Fun 𝐺
36 funcnvres2 5969 . . . . . . . . . . . . . . . . 17 (Fun 𝐺(𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)))
37 f1oeq1 6127 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)) → ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴))
3835, 36, 37mp2b 10 . . . . . . . . . . . . . . . 16 ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
3933, 38sylib 208 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℕ → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
40 f1ofo 6144 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴)
41 forn 6118 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4240, 41syl 17 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4342eleq2d 2687 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ 𝑛𝐴))
44 f1ofn 6138 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴))
45 fvelrnb 6243 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴) → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4644, 45syl 17 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4743, 46bitr3d 270 . . . . . . . . . . . . . . 15 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4839, 47syl 17 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℕ → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4948biimpa 501 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)
50 fvres 6207 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (𝐺𝐴) → ((𝐺 ↾ (𝐺𝐴))‘𝑚) = (𝐺𝑚))
5150eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 ↔ (𝐺𝑚) = 𝑛))
5251biimpa 501 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (𝐺𝐴) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5352adantll 750 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5424sseli 3599 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → 𝑚 ∈ ω)
553, 4om2uzlt2i 12750 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ω ∧ 𝑚 ∈ ω) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
5654, 55sylan2 491 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
57 breq2 4657 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑚) = 𝑛 → ((𝐺𝑦) < (𝐺𝑚) ↔ (𝐺𝑦) < 𝑛))
5856, 57sylan9bb 736 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ (𝐺𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
5953, 58syldan 487 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
6059biimparc 504 . . . . . . . . . . . . . . . 16 (((𝐺𝑦) < 𝑛 ∧ ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)) → 𝑦𝑚)
6160exp44 641 . . . . . . . . . . . . . . 15 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))))
6261imp31 448 . . . . . . . . . . . . . 14 ((((𝐺𝑦) < 𝑛𝑦 ∈ ω) ∧ 𝑚 ∈ (𝐺𝐴)) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))
6362reximdva 3017 . . . . . . . . . . . . 13 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → (∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6449, 63syl5 34 . . . . . . . . . . . 12 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6564exp4b 632 . . . . . . . . . . 11 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6665com4l 92 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6766imp 445 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
6867rexlimdv 3030 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∃𝑛𝐴 (𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6931, 68syld 47 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7069ex 450 . . . . . 6 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7170com3l 89 . . . . 5 (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7271imp 445 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7372ralrimiv 2965 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)
74 unbnn3 8556 . . 3 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚) → (𝐺𝐴) ≈ ω)
7524, 73, 74sylancr 695 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝐺𝐴) ≈ ω)
76 entr 8008 . 2 ((𝐴 ≈ (𝐺𝐴) ∧ (𝐺𝐴) ≈ ω) → 𝐴 ≈ ω)
7717, 75, 76syl2anc 693 1 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  ωcom 7065  reccrdg 7505  cen 7952  1c1 9937   + caddc 9939   < clt 10074  cn 11020  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  unben  15613
  Copyright terms: Public domain W3C validator