HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncvi Structured version   Visualization version   GIF version

Theorem spansncvi 28511
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spansncv.1 𝐴C
spansncv.2 𝐵C
spansncv.3 𝐶 ∈ ℋ
Assertion
Ref Expression
spansncvi ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))

Proof of Theorem spansncvi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 ⊆ (𝐴 (span‘{𝐶})))
2 pssss 3702 . . . 4 (𝐴𝐵𝐴𝐵)
32adantr 481 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐴𝐵)
4 pssnel 4039 . . . . . . 7 (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 ssel2 3598 . . . . . . . . . . . 12 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴 (span‘{𝐶})))
6 spansncv.1 . . . . . . . . . . . . . . . 16 𝐴C
7 spansncv.3 . . . . . . . . . . . . . . . 16 𝐶 ∈ ℋ
86, 7spansnji 28505 . . . . . . . . . . . . . . 15 (𝐴 + (span‘{𝐶})) = (𝐴 (span‘{𝐶}))
98eleq2i 2693 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ 𝑥 ∈ (𝐴 (span‘{𝐶})))
107spansnchi 28421 . . . . . . . . . . . . . . 15 (span‘{𝐶}) ∈ C
116, 10chseli 28318 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
129, 11bitr3i 266 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴 (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
13 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑦 + 𝑧) → (𝑥𝐵 ↔ (𝑦 + 𝑧) ∈ 𝐵))
1413biimpac 503 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐵𝑥 = (𝑦 + 𝑧)) → (𝑦 + 𝑧) ∈ 𝐵)
152sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴𝐵𝑦𝐴) → 𝑦𝐵)
16 spansncv.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐵C
1716chshii 28084 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐵S
18 shsubcl 28077 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵S ∧ (𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
1917, 18mp3an1 1411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2014, 15, 19syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥𝐵𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑦𝐴)) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2120exp43 640 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐵 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑦𝐴 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2221com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑥𝐵 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2322imp45 623 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
246cheli 28089 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐴𝑦 ∈ ℋ)
2510cheli 28089 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (span‘{𝐶}) → 𝑧 ∈ ℋ)
26 hvpncan2 27897 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2724, 25, 26syl2an 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2827eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (((𝑦 + 𝑧) − 𝑦) ∈ 𝐵𝑧𝐵))
2923, 28syl5ib 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → 𝑧𝐵))
3029imp 445 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ (𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3130anandis 873 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴 ∧ (𝑧 ∈ (span‘{𝐶}) ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3231exp45 642 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → 𝑧𝐵))))
3332imp41 619 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑥𝐵)) → 𝑧𝐵)
3433adantrr 753 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → 𝑧𝐵)
35 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 → (𝑦 + 𝑧) = (𝑦 + 0))
36 ax-hvaddid 27861 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
3724, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐴 → (𝑦 + 0) = 𝑦)
3835, 37sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐴𝑧 = 0) → (𝑦 + 𝑧) = 𝑦)
3938eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = 𝑦))
40 eleq1a 2696 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝐴 → (𝑥 = 𝑦𝑥𝐴))
4140adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = 𝑦𝑥𝐴))
4239, 41sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
4342impancom 456 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (𝑧 = 0𝑥𝐴))
4443necon3bd 2808 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (¬ 𝑥𝐴𝑧 ≠ 0))
4544imp 445 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → 𝑧 ≠ 0)
46 spansnss 28430 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵S𝑧𝐵) → (span‘{𝑧}) ⊆ 𝐵)
4717, 46mpan 706 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐵 → (span‘{𝑧}) ⊆ 𝐵)
48 spansneleq 28429 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
497, 48mpan 706 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ≠ 0 → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
5049imp 445 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (span‘{𝑧}) = (span‘{𝐶}))
5150sseq1d 3632 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → ((span‘{𝑧}) ⊆ 𝐵 ↔ (span‘{𝐶}) ⊆ 𝐵))
5247, 51syl5ib 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5352ancoms 469 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ (span‘{𝐶}) ∧ 𝑧 ≠ 0) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5445, 53sylan2 491 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ (span‘{𝐶}) ∧ ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5554exp44 641 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (span‘{𝐶}) → (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5655com12 32 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5756imp41 619 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5857adantrl 752 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5934, 58mpd 15 . . . . . . . . . . . . . . 15 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (span‘{𝐶}) ⊆ 𝐵)
6059exp43 640 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))))
6160rexlimivv 3036 . . . . . . . . . . . . 13 (∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6212, 61sylbi 207 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 (span‘{𝐶})) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
635, 62syl 17 . . . . . . . . . . 11 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6463imp 445 . . . . . . . . . 10 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) ∧ (𝐴𝐵𝑥𝐵)) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6564anandirs 874 . . . . . . . . 9 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6665expimpd 629 . . . . . . . 8 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
6766exlimdv 1861 . . . . . . 7 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
684, 67syl5 34 . . . . . 6 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
6968ex 450 . . . . 5 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵)))
7069pm2.43d 53 . . . 4 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
7170impcom 446 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (span‘{𝐶}) ⊆ 𝐵)
726, 10, 16chlubii 28331 . . 3 ((𝐴𝐵 ∧ (span‘{𝐶}) ⊆ 𝐵) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
733, 71, 72syl2anc 693 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
741, 73eqssd 3620 1 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  wss 3574  wpss 3575  {csn 4177  cfv 5888  (class class class)co 6650  chil 27776   + cva 27777  0c0v 27781   cmv 27782   S csh 27785   C cch 27786   + cph 27788  spancspn 27789   chj 27790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942  ax-hcompl 28059
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-ssp 27577  df-ph 27668  df-cbn 27719  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-hcau 27830  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-span 28168  df-chj 28169  df-pjh 28254
This theorem is referenced by:  spansncv  28512
  Copyright terms: Public domain W3C validator