![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f10d | Structured version Visualization version GIF version |
Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
f10d.f | ⊢ (𝜑 → 𝐹 = ∅) |
Ref | Expression |
---|---|
f10d | ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f10 6169 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
2 | dm0 5339 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | f1eq2 6097 | . . . 4 ⊢ (dom ∅ = ∅ → (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴) |
5 | 1, 4 | mpbir 221 | . 2 ⊢ ∅:dom ∅–1-1→𝐴 |
6 | f10d.f | . . 3 ⊢ (𝜑 → 𝐹 = ∅) | |
7 | 6 | dmeqd 5326 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom ∅) |
8 | eqidd 2623 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐴) | |
9 | 6, 7, 8 | f1eq123d 6131 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→𝐴 ↔ ∅:dom ∅–1-1→𝐴)) |
10 | 5, 9 | mpbiri 248 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∅c0 3915 dom cdm 5114 –1-1→wf1 5885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 |
This theorem is referenced by: umgr0e 26005 usgr0e 26128 |
Copyright terms: Public domain | W3C validator |