MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o00 Structured version   Visualization version   GIF version

Theorem f1o00 6171
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 6145 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2 fn0 6011 . . . . . 6 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
32biimpi 206 . . . . 5 (𝐹 Fn ∅ → 𝐹 = ∅)
43adantr 481 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐹 = ∅)
5 dm0 5339 . . . . 5 dom ∅ = ∅
6 cnveq 5296 . . . . . . . . . 10 (𝐹 = ∅ → 𝐹 = ∅)
7 cnv0 5535 . . . . . . . . . 10 ∅ = ∅
86, 7syl6eq 2672 . . . . . . . . 9 (𝐹 = ∅ → 𝐹 = ∅)
92, 8sylbi 207 . . . . . . . 8 (𝐹 Fn ∅ → 𝐹 = ∅)
109fneq1d 5981 . . . . . . 7 (𝐹 Fn ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
1110biimpa 501 . . . . . 6 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → ∅ Fn 𝐴)
12 fndm 5990 . . . . . 6 (∅ Fn 𝐴 → dom ∅ = 𝐴)
1311, 12syl 17 . . . . 5 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → dom ∅ = 𝐴)
145, 13syl5reqr 2671 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐴 = ∅)
154, 14jca 554 . . 3 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → (𝐹 = ∅ ∧ 𝐴 = ∅))
162biimpri 218 . . . . 5 (𝐹 = ∅ → 𝐹 Fn ∅)
1716adantr 481 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn ∅)
18 eqid 2622 . . . . . 6 ∅ = ∅
19 fn0 6011 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
2018, 19mpbir 221 . . . . 5 ∅ Fn ∅
218fneq1d 5981 . . . . . 6 (𝐹 = ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
22 fneq2 5980 . . . . . 6 (𝐴 = ∅ → (∅ Fn 𝐴 ↔ ∅ Fn ∅))
2321, 22sylan9bb 736 . . . . 5 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn 𝐴 ↔ ∅ Fn ∅))
2420, 23mpbiri 248 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn 𝐴)
2517, 24jca 554 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2615, 25impbii 199 . 2 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
271, 26bitri 264 1 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  c0 3915  ccnv 5113  dom cdm 5114   Fn wfn 5883  1-1-ontowf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  fo00  6172  f1o0  6173  en0  8019  symgbas0  17814  derang0  31151  poimirlem28  33437
  Copyright terms: Public domain W3C validator